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Welcome

Welcome to R for Epidemiology!

This electronic textbook was originally created to accompany the Introduction to R Program-
ming for Epidemiologic Research course at the University of Texas Health Science Center
School of Public Health. However, we hope it will be useful to anyone who is interested in R,
epidemiology, or human health and well-being.

Acknowledgements

This book is currently a work in progress (and probably always will be); however, there
are already many people who have played an important role (some unknowingly) in helping
develop it thus far. First, we’d like to offer our gratitude to all past, current, and future
members of the R Core Team for maintaining this amazing, free software. We’d also like to
express our gratitude to everyone at Posit. You are also developing and giving away some
amazing software. In particular, we’d like to acknowledge Garrett Grolemund and Hadley
Wickham. Both have had a huge impact on how we use and teach R. We’d also like to thank
our students for all the feedback they’ve given us while taking our courses. In particular, we
want to thank Jared Wiegand and Yiqun Wang for their many edits and suggestions.

This electronic textbook was created and published using R, RStudio, the Quarto, and
GitHub.
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Introduction

Goals

We’re going to start the introduction by writing down some basic goals that underlie the
construction and content of this book. We’re writing this for you, the reader, but also to hold
ourselves accountable as we write. So, feel free to read if you are interested or skip ahead if
you aren’t.

The goals of this book are:

1. To teach you how to use R and RStudio as tools for applied epidemiology.1
Our goal is not to teach you to be a computer scientist or an advanced R programmer.
Therefore, some readers who are experienced programmers may catch some technical
inaccuracies regarding what we consider to be the fine points of what R is doing “under
the hood.”

2. To make this writing as accessible and practically useful as possible without
stripping out all of the complexity that makes doing epidemiology in real
life a challenge. In other words, We’re going to try to give you all the tools you need
to do epidemiology in “real world” conditions (as opposed to ideal conditions) without
providing a whole bunch of extraneous (often theoretical) stuff that detracts from doing.
Having said that, we will strive to add links to the other (often theoretical) stuff for
readers who are interested.

3. To teach you to accomplish common tasks, rather than teach you to use functions
or families of functions. In many R courses and texts, there is a focus on learning all
the things a function, or set of related functions, can do. It’s then up to you, the reader,
to sift through all of these capabilities and decided which, if any, of the things that can
be done will accomplish the tasks that you are actually trying to accomplish. Instead,
we will strive to start with the end in mind. What is the task we are actually trying to
accomplish? What are some functions/methods we could use to accomplish that task?
What are the strengths and limitations of each?

1In this case, “tools for applied epidemiology” means (1) understanding epidemiologic concepts; and (2)
completing and interpreting epidemiologic analyses.
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4. To start each concept by showing you the end result and then deconstruct how
we arrived at that result, where possible. We find that it is easier for many people to
understand new concepts when learning them as a component of a final product.

5. To learn concepts with data instead of (or alongside) mathematical formulas and text
descriptions, where possible. We find that it is easier for many people to understand new
concepts by seeing them in action.

Text conventions used in this book

• We will hyperlink many keywords or phrases to their glossary entry.
• Additionally, we may use bold face for a word or phrase that we want to call attention

to, but it is not necessarily a keyword or phrase that we want to define in the glossary.
• Highlighted inline code is used to emphasize small sections of R code and program

elements such as variable or function names.

Other reading

If you are interested in R4Epi, you may also be interested in:

• Hands-on Programming with R by Garrett Grolemund. This book is designed to provide
a friendly introduction to the R language.

• R for Data Science by Hadley Wickham, Mine Çetinkaya-Rundel, and Garrett Grole-
mund. This book is designed to teach readers how to do data science with R.

• Statistical Inference via Data Science: A ModernDive into R and the Tidyverse. This
book is designed to be a gentle introduction to the practice of analyzing data and an-
swering questions using data the way data scientists, statisticians, data journalists, and
other researchers would.

• Reproducable Research with R and RStudio by Christopher Gandrud. This book gives
you tools for data gathering, analysis, and presentation of results so that you can create
dynamic and highly reproducible research.

• Advanced R by Hadley Wickham. This book is designed primarily for R users who want
to improve their programming skills and understanding of the language.

9

appendices/glossary.qmd
https://rstudio-education.github.io/hopr/
https://r4ds.hadley.nz/
https://moderndive.com/
http://christophergandrud.github.io/RepResR-RStudio/
https://adv-r.hadley.nz/


Contributing

Over the years, we have learned so much from our students and colleagues, and we anticipate
that there is much more we can learn from you – our readers. Therefore, we welcome and
appreciate all constructive contributions to R4Epi!

Typos

The easiest way for you to contribute is to help us clean up the little typos and grammatical
errors that inevitably sneak into the text.

If you spot a typo, you can offer a correction directly in GitHub. You will first need to create
a free GitHub account: sign-up at github.com. Later in the book, we will cover using GitHub
in greater depth in see Using-git-and-Github. Here, we’re just going to walk you through how
to fix a typo without much explanation of how GitHub works.

Let’s say you spot a typo while reading along.

Next, click the edit button in the toolbar as shown in the screenshot below.

The first time you click the icon, you will be taken to the R4Epi repository on GitHub and
asked to fork it. For our purposes, you can think of a GitHub repository as being similar to a
shared folder on Dropbox or Google Drive.
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“Forking the repository” basically just means “make a copy of the repository” on your GitHub
account. In other words, copy all of the files that make up the R4Epi textbook to your GitHub
account. Then, you can fix the typos you found in your copy of the files that make up the
book instead of directly editing the actual files that make up the book. This is a safeguard to
prevent people from accidentally making changes that shouldn’t be made.

Note

Forking the R4Epi repository does not cost any money or add any files to your computer.

After you fork the repository, you will see a text editor on your screen.

The text editor will display the contents of the file used to make the chapter you were looking
at when you clicked the edit button. In this example, it was a file named contributing.qmd.
The .qmd file extension means that the file is a Quarto/file. We will learn more about Quarto
files, but for now just know that Quarto/ files can be used to create web pages and other
documents that contain a mix of R code, text, and images.

Next, scroll down through the text until you find the typo and fix it. In this case, line 11
contains the word “typoo”. To fix it, you just need to click in the editor window and begin
typing. In this case, you would click next to the word “typoo” and delete the second “o”.
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Now, the only thing left to do is propose your typo fix to the authors. To do so, click the green
Commit changes... button on the right side of the screen above the text editor (surrounded
with a red box in the screenshot above). When you click it, a new Propose changes box
will appear on your screen. Type a brief (i.e., 72 characters or less) summary of the change
you made in the Commit message box. There is also an Extended description box where
you can add a more detailed description of what you did. In the screenshot below, shows an
example commit message and extended description that will make it easy for the author to
quickly figure out exactly what changes are being proposed.
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Next, click the Propose changes button. That will take you to another screen where you will
be able to create a pull request. This screen is kind of busy, but try not to let it overwhelm
you.
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For now, we will focus on the three different sections of the screen that are highlighted with a
red outline. We will start at the bottom and work our way up. The red box that is closest to
the bottom of the screenshot shows us that the change that made was on line 11. The word
“typoo” (highlighted in red) was replaced with the word “typo” (highlighted in green). The
red box in the middle of the screenshot shows us the brief description that was written for our
proposed change – “Fix a typo in contributing.qmd”. Finally, the red box closest to the top
of the screenshot is surrounding the Create pull request button. You will click it to move
on with your pull request.
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After doing so, you will get one final chance to amend the description of your proposed
changes. If you are happy with the commit message and description, then click the Create
pull request button one more time. At this point, your job is done! It is now up to the
authors to review the changes you’ve proposed and “pull” them into the file in their reposi-
tory.

In case you are curious, here is what the process looks like on the authors’ end. First, when
we open the R4Epi repository page on GitHub, we will see that there is a new pull request.

When we open the pull request, we can see the proposed changes to the file.
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Then, all we have to do is click the Merge pull request button and the fixed file is “pulled
in” to replace the file with the typo.
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Issues

There may be times when you see a problem that you don’t know how to fix, but you still
want to make the authors aware of. In that case, you can create an issue in the R4Epi
repository. To do so, navigate to the issue tracker using this link: https://github.com/brad-
cannell/r4epi/issues.

Once there, you can check to see if someone has already raised the issue you are concerned
about. If not, you can click the green “New issue” button to raise it yourself.

Please note that R4Epi uses a Contributor Code of Conduct. By contributing to this book,
you agree to abide by its terms.

License Information

This book was created by Brad Cannell and is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.
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1 Installing R and RStudio

Before we can do any programming with R, we first have to download it to our computer.
Fortunately, R is free, easy to install, and runs on all major operating systems (i.e., Mac and
Windows). However, R is even easier to use as when we combine it with another program
called RStudio. Fortunately, RStudio is also free and will also run on all major operating
systems.

At this point, you may be wondering what R is, what RStudio is, and how they are related. We
will answer those questions in the near future. However, in the interest of keeping things brief
and simple, We’re not going to get into them right now. Instead, all you have to worry about
is getting the R programming language and the RStudio IDE (IDE is short for integrated
development environment) downloaded and installed on your computer. The steps involved
are slightly different depending on whether you are using a Mac or a PC (i.e., Windows).
Therefore, please feel free to use the table of contents on the right-hand side of the screen to
navigate directly to the instructions that you need for your computer.

Note

In this chapter, we cover how to download and install R and RStudio on both Mac and
PC. However, the screenshots in all following chapters will be from a Mac. The good
news is that RStudio operates almost identically on Mac and PC.

Step 1: Regardless of which operating system you are using, please make sure your computer
is on, properly functioning, connected to the internet, and has enough space on your hard
drive to save R and RStudio.

1.1 Download and install on a Mac

Step 2: Navigate to the Comprehensive R Archive Network (CRAN), which is located at
https://cran.r-project.org/.
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Step 3: Click on Download R for macOS.

Step 4: Click on the link for the latest version of R. As you are reading this, the newest version
may be different than the version you see in this picture, but the location of the newest version
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should be roughly in the same place – the middle of the screen under “Latest release:”. After
clicking the link, R should start to download to your computer automatically.

Step 5: Locate the package file you just downloaded and double click it. Unless you’ve
changed your download settings, this file will probably be in your “downloads” folder. That
is the default location for most web browsers. After you locate the file, just double click it.
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Step 6: A dialogue box will open and ask you to make some decisions about how and where
you want to install R on your computer. We typically just click “continue” at every step
without changing any of the default options.

If R installed properly, you should now see it in your applications folder.
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Step 7: Now, we need to install the RStudio IDE. To do this, navigate to the RStudio desktop
download website, which is located at https://posit.co/download/rstudio-desktop/. On that
page, click the button to download the latest version of RStudio for your computer. Note that
the website may look different that what you see in the screenshot below because websites
change over time.
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Step 8: Again, locate the DMG file you just downloaded and double click it. Unless you’ve
changed your download settings, this file should be in the same location as the R package file
you already downloaded.
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Step 9: A new finder window should automatically pop up that looks like the one you see
below. Click on the RStudio icon and drag it into the Applications folder.

You should now see RStudio in your Applications folder. Double click the icon to open
RStudio.
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If this warning pops up, just click Open.

The RStudio IDE should open and look something like the window you see here. If so, you
are good to go! �
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1.2 Download and install on a PC

Step 2: Navigate to the Comprehensive R Archive Network (CRAN), which is located at
https://cran.r-project.org/.
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Step 3: Click on Download R for Windows.

Step 4: Click on the base link.
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Step 5: Click on the link for the latest version of R. As you are reading this, the newest version
may be different than the version you see in this picture, but the location of the newest version
should be roughly the same. After clicking, R should start to download to your computer.

Step 6: Locate the installation file you just downloaded and double click it. Unless you’ve
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changed your download settings, this file will probably be in your downloads folder. That is
the default location for most web browsers.

Step 7: A dialogue box will open that asks you to make some decisions about how and where
you want to install R on your computer. We typically just click “Next” at every step without
changing any of the default options.
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If R installed properly, you should now see it in the Windows start menu.

Step 8: Now, we need to install the RStudio IDE. To do this, navigate to the RStudio desktop
download website, which is located at https://posit.co/download/rstudio-desktop/. On that
page, click the button to download the latest version of RStudio for your computer. Note that
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the website may look different that what you see in the screenshot below because websites
change over time.

Step 9: Again, locate the installation file you just downloaded and double click it. Unless
you’ve changed your download settings, this file should be in the same location as the R
installation file you already downloaded.
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Step 10: Another dialogue box will open and ask you to make some decisions about how and
where you want to install RStudio on your computer. We typically just click “Next” at every
step without changing any of the default options.

When RStudio is finished installing, you should see RStudio in the Windows start menu. Click
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the icon to open RStudio.

The RStudio IDE should open and look something like the window you see here. If so, you
are good to go! �
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2 What is R?

At this point in the book, you should have installed R and RStudio on your computer, but you
may be thinking to yourself, “I don’t even know what R is.” Well, in this chapter you’ll find
out. We’ll start with an overview of the R language, and then briefly touch on its capabilities
and uses. You’ll also see a complete R program and some complete documents generated by
R programs. In this book you’ll learn how to create similar programs and documents, and by
the end of the book you’ll be able to write your own R programs and present your results in
the form of an issue brief written for general audiences who may or may not have public health
expertise. But, before we discuss R let’s discuss something even more basic – data. Here’s a
question for you: What is data?

2.1 What is data?

Data is information about objects (e.g., people, places, schools) and observable phenomenon
(e.g., weather, temperatures, and disease symptoms) that is recorded and stored somehow
as a collection of symbols, numbers, and letters. So, data is just information that has been
“written” down.

Here we have a table, which is a common way of organizing data. In R, we will typically refer
to these tables as data frames.
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Each box in a data frame is called a cell.

Moving from left to right across the data frame are columns. Columns are also sometimes
referred to as variables. In this book, we will often use the terms columns and variables
interchangeably. Each column in a data frame has one, and only one, type. For now, know
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that the type tells us what kind of data is contained in a column and what we can do with
that data. You may have already noticed that 3 of the columns in the table we’ve been looking
at contain numbers and 1 of the columns contains words. These columns will have different
types in R and we can do different things with them based on their type. For example, we
could ask R to tell us what the average value of the numbers in the height column are, but it
wouldn’t make sense to ask R to tell us the average value of the words in the Gender column.
We will talk more about many of the different column types exist in R later in this book.

The information contained in the first cell of each column is called the column name (or
variable) name.

R gives us a lot of flexibility in terms of what we can name our columns, but there are a few
rules.

1. Column names can contain letters, numbers and the dot (.) or underscore (_) characters.

2. Additionally, they can begin with a letter or a dot – as long as the dot is not followed
by a number. So, a name like “.2cats” is not allowed.

3. Finally, R has some reserved words that you are not allowed to use for column names.
These include: “if”, “else”, “repeat”, “while”, “function”, “for”, “in”, “next”, and
“break”.
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Moving from top to bottom across the table are rows, which are sometimes referred to as
records.

Finally, the contents of each cell are called values.
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You should now be up to speed on some basic terminology used by R, as well as other analytic,
database, and spreadsheet programs. These terms will be used repeatedly throughout the
course.
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2.2 What is R?

So, what is R? Well, R is an open source statistical programming language that was created
in the 1990’s specifically for data analysis. We will talk more about what open source means
later, but for now, just think of R as an easy (relatively �) way to ask your computer to do
math and statistics for you. More specifically, by the end of this book you will be able to
independently use R to transfer data, manage data, analyze data, and present the results of
your analysis. Let’s quickly take a closer look at each of these.
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2.2.1 Transferring data

So, what do we mean by “transfer data”? Well, individuals and organizations store their data
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using different computer programs that use different file types. Some common examples that
you may come across in epidemiology are database files, spreadsheets, raw data files, and SAS
data sets. No matter how the data is stored, you can’t do anything with it until you can get
it into R, in a form that R can use, and in a location that you can reach. In other words,
transferring your data. Therefore, among our first tasks in this course will be to transfer
data.

2.2.2 Managing data

This isn’t very specific, but managing data is all the things you may have to do to your data
to get it ready for analysis. You may also hear people refer to this process as data wrangling
or data munging. Some specific examples of data management tasks include:

• Validating and cleaning data. In other words, dealing with potential errors in the data.

• Subsetting data. For example, using only some of the columns or some of the rows.

• Creating new variables. For example, creating a BMI variable in a data frame that was
sent to you with height and weight columns.

• Combining data frames. For example, combining sociodemographic data about study
participants with data collected in the field during an intervention.
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You may sometimes hear people refer to the 80/20 rule in reference to data management. This
“rule” says that in a typical data analysis project, roughly 80% of your time will be spent on
data management and only 20% will be spent on the analysis itself. We can’t provide you
with any empirical evidence (i.e., data) to back this claim up. But, as people who have been
involved in many projects that involve the collection and analysis of data, we can tell you
anecdotally that this ”rule” is probably pretty close to being accurate in most cases.

Additionally, it’s been our experience that most students of epidemiology are required to take
one or more classes that emphasize methods for analyzing data; however, almost none of them
have taken a course that emphasizes data management!

Therefore, because data management is such a large component of most projects that involve
the collection and analysis of data, and because most readers will have already been exposed
to data analysis to a much greater extent than data management, this course will heavily
emphasize the latter.

2.2.3 Analyzing data

As just discussed, this is probably the capability you most closely associate with R, and there
is no doubt that R is a powerful tool for analyzing data. However, in this book we won’t go
beyond using R to calculate basic descriptive statistics. For our purposes, descriptive statistics
include:
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• Measures of central tendency. For example, mean, median, and mode.

• Measures of dispersion. For example, variance and standard error.

• Measures for describing categorical variables. For example, counts and percentages.

• Describing data using graphs and charts. With R, we can describe our data using
beautiful and informative graphs.

2.2.4 Presenting data

And finally, the ultimate goal is typically to present your findings in some form or another.
For example, a report, a website, or a journal article. With R you can present your results in
many different formats with relative ease. In fact, this is one of our favorite things about R
and RStudio. In this class you will learn how to take your text, tabular, or graphical results
and then publish them in many different formats including Microsoft Word, html files that
can be viewed in web browsers, and pdf documents. Let’s take a look at some examples.

1. Microsoft Word documents. Click here to view an example report created for one
of our research projects in Microsoft Word.

2. PDF documents. Click here to view a data dictionary we created in PDF format.
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3. HTML files. Hypertext Markup Language (HTML) files are what you are looking at
whenever you view a webpage. You can use R to create HTML files that others can
view in their web browser. You can email them these files to view in their web browser,
or you can make them available for others to view online just like any other web-
site. Click here to view an example dashboard we created for one of our research projects.

4. Web applications. You can even use R to create full-fledged web applications. View
the RStudio website to see some examples.
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3 Navigating the RStudio Interface

If you followed along with the previous chapters, you have R and RStudio installed on your
computer and you have some idea of what R and RStudio are. At this point, it can be common
for people to open RStudio and get totally overwhelmed. “What am I looking at?” ”What
do I click first?” “Where do I even start?” Don’t worry if these, or similar, thoughts have
crossed your mind. You are in good company and we will start to clear some of them up in
this chapter.

When we load RStudio, we should see a screen that looks very similar to Figure 3.1 below.
There, we see three panes, and each pane has multiple tabs.

Figure 3.1: The default RStudio user interface.
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3.1 The console pane

The first pane we are going to talk about is the console/terminal/background jobs pane.

Figure 3.2: The R Console.

It’s called the “console/terminal/background jobs” pane because it has three tabs we can click
on by default: “console”, “terminal”, and “background jobs”. However, we will refer to this
pane as the “console pane” and will mostly ignore the terminal and background jobs tabs
for now. We aren’t ignoring them because they aren’t useful; instead, we are ignoring them
because using them isn’t essential for anything we will discuss in this chapter, and we want to
keep things as simple as possible for now.

The console is the most basic way to interact with R. We can type a command to R into the
console prompt (the prompt looks like “>”) and R will respond to what we type. For example,
below we typed “1 + 1,” pressed the return/enter key, and the R console returned the sum of
the numbers 1 and 1.

The number 1 we see in brackets before the 2 (i.e., [1]) is telling us that this line of results
starts with the first result. That fact is obvious here because there is only one result. So, let’s
look at a result that spans multiple lines to make this idea clearer.

In Figure 3.4 we see examples of a couple of new concepts that are worth discussing.
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Figure 3.3: Doing some addition in the R console.
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Figure 3.4: Demonstrating a function that returns multiple results.
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First, as promised, we have more than one line of results (or output). The first line of results
starts with a 1 in brackets (i.e., [1]), which indicates that this line of results starts with the
first result. In this case, the first result is the number 2. The second line of results starts with
a 29 in brackets (i.e., [29]), which indicates that this line of results starts with the twenty-ninth
result. In this case, the twenty-ninth result is the number 58. If we count the numbers in the
first line, there should be 28 – results 1 through 28. We also want to make it clear that “1”
and “29” are NOT results themselves. They are just helping us count the number of results
per line.

The second new thing that you may have noticed in Figure 3.4 is our use of a function.
Functions are a BIG DEAL in R. So much so that R is called a functional language. We
don’t really need to know all the details of what that means; however, we should know that, in
general, everything we do in R we will do with a function. By contrast, everything we create in
R will be an object. If we wanted to make an analogy between the R language and the English
language, we could think of functions as verbs – they do things – and objects as nouns – they
are things. This distinction likely seems abstract and confusing at the moment, but we will
make it more concrete soon.

Most functions in R begin with the function name followed by parentheses. For example,
seq(), sum(), and mean().

Question: What is the name of the function we used in the example above?

Answer: We used the seq() function – short for sequence - in the example above.

You may notice that there are three pairs of words, equal symbols, and numbers that are
separated by commas inside the seq() function. They are, from = 2, to = 100, and by =
2. The words from, to, and by are all arguments to the seq() function. We will learn more
about functions and arguments later. For now, just know that arguments give functions the
information they need to give us the result we want.

In this case, the seq() function returns a sequence of numbers. But first, we had to give it
information about where that sequence should start, where it should end, and how many steps
should be in the middle. Above, the sequence began with the value we passed to the from
argument (i.e., 2), it ended with the value we passed to the to argument (i.e., 100), and it
increased at each step by the number we passed to the by argument (i.e., 2). So, 2, 4, 6, 8 …
100.

Whether you realize it or not, we’ve covered some important programming terms while dis-
cussing the seq() function above. Before we move on to discussing RStudio’s other panes,
let’s quickly review and reinforce a few of terms we will use repeatedly in this book.

• Arguments: Arguments always live inside the parentheses of R functions and receive
information the function needs to generate the result we want.
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• Pass: In programming lingo, we pass a value to a function argument. For example, in the
function call seq(from = 2, to = 100, by = 2) we could say that we passed a value
of 2 to the from argument, we passed a value of 100 to the to argument, and we passed
a value of 2 to the by argument.

• Return: Instead of saying, “the seq() function gives us a sequence of numbers…” we say,
“the seq() function returns a sequence of numbers…” In programming lingo, functions
return one or more results.

Note

�Side Note: The seq() function isn’t particularly important or noteworthy. We es-
sentially chose it at random to illustrate some key points. However, arguments, passing
values, and return values are extremely important concepts and we will return to them
many times.

3.2 The environment pane

The second pane we are going to talk about is the environment/history/connections pane in
Figure 3.5. However, we will mostly refer to it as the environment pane and we will mostly
ignore the history and connections tab. We aren’t ignoring them because they aren’t useful;
rather, we are ignoring them because using them isn’t essential for anything we will discuss
anytime soon, and we want to keep things as simple as possible.

The Environment pane shows you all the objects that R can currently use for data manage-
ment or analysis. In this picture, Figure 3.5 our environment is empty. Let’s create an object
and add it to our environment.

Here we see that we created a new object called x, which now appears in our Global Envi-
ronment. Figure 3.6 This gives us another great opportunity to discuss some new concepts.

First, we created the x object in the console by assigning the value 2 to the letter x. We did
this by typing “x” followed by a less than symbol (<), a dash symbol (-), and the number 2.
R is kind of unique in this way. we have never seen another programming language (although
I’m sure they are out there) that uses <- to assign values to variables. By the way, <- is called
the assignment operator (or assignment arrow), and ”assign” here means “make x contain 2”
or “put 2 inside x.”

In many other languages you would write that as x = 2. But, for whatever reason, in R it
is <-. Unfortunately, <- is more awkward to type than =. Fortunately, RStudio gives us a
keyboard shortcut to make it easier. To type the assignment operator in RStudio, just hold
down Option + - (dash key) on a Mac or Alt + - (dash key) on a PC and RStudio will insert
<- complete with spaces on either side of the arrow. This may still seem awkward at first, but
you will get used to it.
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Figure 3.5: The environment pane
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Figure 3.6: The vector x in the global environment.
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Note

�Side Note: A note about using the letter “x”: By convention, the letter “x” is a widely
used variable name. You will see it used a lot in example documents and online. However,
there is nothing special about the letter x. We could have just as easily used any other
letter (a <- 2), word (variable <- 2), or descriptive name (my_favorite_number <-
2) that is allowed by R.

Second, you can see that our Global Environment now includes the object x, which has a value
of 2. In this case, we would say that x is a numeric vector of length 1 (i.e., it has one value
stored in it). We will talk more about vectors and vector types soon. For now, just notice that
objects that you can manipulate or analyze in R will appear in your Global Environment.

Warning

R is a case sensitive language. That means that uppercase x (X) and lowercase x (x)
are different things to R. So, if you assign 2 to lower case x (x <- 2). And then later ask
R to tell what number you stored in uppercase X, you will get an error (Error: object
'X' not found).

3.3 The files pane

Next, let’s talk about the Files/Plots/Packages/Help/Viewer pane (that’s a mouthful). Fig-
ure 3.7

Again, some of these tabs are more applicable for us than others. For us, the files tab and
the help tab will probably be the most useful. You can think of the files tab as a mini Finder
window (for Mac) or a mini File Explorer window (for PC). The help tab is also extremely
useful once you get acclimated to it.

For example, in the screenshot above Figure 3.8 we typed the seq into the search bar. The
help pane then shows us a page of documentation for the seq() function. The documentation
includes a brief description of what the function does, outlines all the arguments the seq()
function recognizes, and, if you scroll down, gives examples of using the seq() function.
Admittedly, this help documentation can seem a little like reading Greek (assuming you don’t
speak Greek) at first. But, you will get more comfortable using it with practice. We hated
the help documentation when we were learning R. Now, we use it all the time.
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Figure 3.7: The Files/Plots/Packages/Help/Viewer pane.
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Figure 3.8: The help tab.

58



3.4 The source pane

There is actually a fourth pane available in RStudio. If you click on the icon shown below you
will get the following dropdown box with a list of files you can create. Figure 3.9

Figure 3.9: Click the new source file icon.

If you click any of these options, a new pane will appear. We will arbitrarily pick the first
option – R Script.

When we do, a new pane appears. It’s called the source pane. In this case, the source
pane contains an untitled R Script. We won’t get into the details now because we don’t want
to overwhelm you, but soon you will do the majority of your R programming in the source
pane.

3.5 RStudio preferences

Finally, We’re going to recommend that you change a few settings in RStudio before we move
on. Start by clicking Tools, and then Global Options in RStudio’s menu bar, which probably
runs horizontally across the top of your computer’s screen.
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Figure 3.10: New source file options.
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Figure 3.11: A blank R script in the source pane.
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Figure 3.12: Select the preferences menu on Mac.
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In the General tab, we recommend turning off the Restore .Rdata into workspace at
startup option. We also recommend setting the Save workspace .Rdata on exit dropdown
to Never. Finally, we recommend turning off the Always save history (even when not
saving .Rdata) option.

Figure 3.13: General options tab.

We change our editor theme to Twilight in the Appearance tab. We aren’t necessarily recom-
mending that you change your theme – this is entirely personal preference – we’re just letting
you know why our screenshots will look different from here on out.

It’s likely that you still have lots of questions at this point. That’s totally natural. However,
we hope you now feel like you have some idea of what you are looking at when you open
RStudio. Most of you will naturally get more comfortable with RStudio as we move through
the book. For those of you who want more resources now, here are some suggestions.

1. RStudio IDE cheatsheet

2. ModernDive: What are R and RStudio?
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Figure 3.14: Appearance tab.
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4 Speaking R’s Language

It has been our experience that students often come into statistical programming courses
thinking they will be heavy in math or statistics. In reality, our R courses are probably
much closer to a foreign language course. There is no doubt that we need a foundational
understanding of math and statistics to understand the results we get from R, but R will take
care of most of the complicated stuff for us. We only need to learn how to ask R to do what
we want it to do. To some extent, this entire book is about learning to communicate with R,
but in this chapter we will briefly introduce the R programming language from the 30,000-foot
level.

4.1 R is a language

In the same way that many people use the English language to communicate with each other,
we will use the R programming language to communicate with R. Just like the English lan-
guage, the R language comes complete with its own structure and vocabulary. Unfortunately,
just like the English language, it also includes some weird exceptions and occasional mis-
communications. We’ve already seen a couple examples of commands written to R in the R
programming language. Specifically:

# Store the value 2 in the variable x
x <- 2
# Print the contents of x to the screen
x

[1] 2

and

# Print an example number sequence to the screen
seq(from = 2, to = 100, by = 2)

[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
[20] 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76
[39] 78 80 82 84 86 88 90 92 94 96 98 100
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Note

�Side Note: The gray boxes you see above are called R code chunks and we created
them (and this entire book) using something called Quarto files. Can you believe that
you can write an entire book with R and RStudio? How cool is that? You will learn to
use Quarto files later in this book. Quarto is great because it allows you to mix R code
with narrative text and multimedia content as we’ve done throughout the page you’re
currently looking at. This makes it really easy for us to add context and aesthetic appeal
to our results.

4.2 The R interpreter

Question: We keep talking about “speaking” to R, but when you speak to R using the R
language, who are you actually speaking to?

Well, you are speaking to something called the R interpreter. The R interpreter takes the
commands we’ve written in the R language, sends them to our computer to do the actual work
(e.g., get the mean of a set of numbers), and then translates the results of that work back to
us in a form that we humans can understand (e.g., the mean is 25.5). At this stage, one of
the key concepts for you to understand about the R language is that is extremely literal!
Understanding the literal nature of R is important because it will be the underlying cause of
a lot of errors in our R code.

4.3 Errors

No matter what we write next, you are going to get errors in your R code. We still get errors
in our R code every single time we write R code. However, our hope is that this section will
help you begin to understand why you are getting errors when you get them and provide us
with a common language for discussing errors.

So, what exactly do we mean when we say that the R interpreter is extremely literal? Well,
in the Navigating RStudio chapter, we already told you that R is a case sensitive language.
Again, that means that uppercase x (X) and lowercase x (x) are different things to R. So, if
you assign 2 to lowercase x (x <- 2). And then later ask R to tell what number you stored in
upper case X; you will get an error (Error: object 'X' not found).

x <- 2
X

Error in eval(expr, envir, enclos): object 'X' not found
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Specifically, this is an example of a logic error. Meaning, R understands what you are asking
it to do – you want it to print the contents of the uppercase X object to the screen. However,
it can’t complete your request because you are asking it to do something that doesn’t logically
make sense – print the contents of a thing that doesn’t exist. Remember, R is literal and it
will not try to guess that you actually meant to ask it to print the contents of lowercase x.

Another general type of error is known as a syntax error. In programming languages, syntax
refers to the rules of the language. You can sort of think of this as the grammar of the
language. In English, we could say something like, “giving dog water drink.” This sentence is
grammatically completely incorrect; however, most of you would roughly be able to figure out
what we’re asking you to do based on your life experience and knowledge of the situational
context. The R interpreter, as awesome as it is, would not be able to make an assumption
about what we want it to do. In this case, the R interpreter would say, “I don’t know what
you’re asking me to do.” When the R interpreter says, “I don’t know what you’re asking me
to do,” we’ve made a syntax error.

Throughout the rest of the book, we will try to point out situations where R programmers
often encounter errors and how you may be able to address them. The remainder of this
chapter will discuss some key components of R’s syntax and the data structures (i.e., ways of
storing data) that the R syntax interacts with.

4.4 Functions

R is a functional programming language, which simply means that functions play a central
role in the R language. But what are functions? Well, factories are a common analogy used
to represent functions. In this analogy, arguments are raw material inputs that go into the
factory. For example, steel and rubber. The function is the factory where all the work takes
place – converting raw materials into the desired output. Finally, the factory output represents
the returned results. In this case, bicycles.
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Figure 4.1: A factory making bicycles.

To make this concept more concrete, in the Navigating RStudio chapter we used the seq()
function as a factory. Specifically, we wrote seq(from = 2, to = 100, by = 2). The inputs
(arguments) were from, to, and by. The output (returned result) was a set of numbers that
went from 2 to 100 by 2’s. Most functions, like the seq() function, will be a word or word part
followed by parentheses. Other examples are the sum() function for addition and the mean()
function to calculate the average value of a set of numbers.
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Figure 4.2: A function factory making numbers.

4.4.1 Passing values to function arguments

When we supply a value to a function argument, that is called “passing” a value to the
argument. Let’s take another look at the sequence function we previously wrote and use it to
help us with this discussion.

# Create a sequence of numbers beginning at 2 and ending at 100, incremented by 2.
seq(from = 2, to = 100, by = 2)

[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
[20] 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76
[39] 78 80 82 84 86 88 90 92 94 96 98 100

In the code above, we passed the value 2 to the from argument, we passed the value 100 to
the to argument, and we passed the value 2 to the by argument. How do we know we passed
the value 2 to the from argument? We know because we wrote from = 2. To R, this means
“pass the value 2 to the from argument,” and it is an example of passing a value by name.
Alternatively, we could have also gotten the same result if we had passed the same values to
the seq() function by position. What does that mean? We’ll explain, but first take a look at
the following R code.
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# Create a sequence of numbers beginning at 2 and ending at 100, incremented by 2.
seq(2, 100, 2)

[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
[20] 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76
[39] 78 80 82 84 86 88 90 92 94 96 98 100

How is code different from the code chunk before it? You got it! We didn’t explicitly write the
names of the function arguments inside of the seq() function. So, how did we get the same
results? We got the same results because R allows us to pass values to function arguments by
name or by position. When we pass values to a function by position, R will pass the first input
value to the first function argument, the second input value to the second function argument,
the third input value to the third function argument, and so on.

But how do we know what the first, second, and third arguments to a function are? Do you
remember our discussion about RStudio’s help tab in the previous chapter? There, we saw
the documentation for the seq() function.

Figure 4.3: The help tab.

In the “Usage” section of the documentation for the seq() function, we can see that all of
the arguments that the seq() function accepts. These documentation files are a little cryptic
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until you get used to them but look directly underneath the part that says “## Default S3
method.” There, it tells us that the seq() function understands the from, to, by, length.out,
along.with, and ... arguments. The from argument is first argument to the seq() function
because it is listed there first, the to argument is second argument to the seq() function
because it is listed there second, and so on. It is really that simple. Therefore, when we type
seq(2, 100, 2), R automatically translates it to seq(from = 2, to = 100, by = 2). And
this is called passing values to function arguments by position.

Note

�Side Note: As an aside, we can view the documentation for any function by typing
?function name into the R console and then pressing the enter/return key. For example,
we can type ?seq to view the documentation for the seq() function.

Passing values to our functions by position has the benefit of making our code more compact,
we don’t have to write out all the function names. But, as you might have already guessed,
passing values to our functions by position also has some potential risks. First, it makes our
code harder to read. If we give our code to someone who has never used the seq() function
before, they will have to guess (or look up) what purpose 2, 100, and 2 serve. When we pass
the values to the function by name, their purpose is typically easier to figure out even if we’ve
never used a particular function before. The second, and potentially more important, risk is
that we may accidentally pass a value to a different argument than the one we intended. For
example, what if we mistakenly think the order of the arguments to the seq() function is
from. by, to? In that case, we might write the following code:

# Create a sequence of numbers beginning at 2 and ending at 100, incremented by 2.
seq(2, 2, 100)

[1] 2

Notice that R still gives us a result, but it isn’t the result we want! What happened? Well,
we passed the values 2, 2, and 100 to the seq() function by position, which R translated to
seq(from = 2, to = 2, by = 100) because from is the first argument in the seq() function,
to is the second argument in the seq() function, and by is the third argument in the seq()
function.

Quick review: is this an example of a syntax error or a logic error?

This is a logic error. We used perfectly valid R syntax in the code above, but we mistakenly
asked R to do something different than we actually wanted it to do. In this simple example,
it’s easy to see that this result is very different than what we were expecting and try to figure
out what we did wrong. But that won’t always be the case. Therefore, we need to be really
careful when passing values to function arguments by position.
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One final note on passing values to functions. When we pass values to R functions by name,
we can pass them in any order we want. For example:

# Create a sequence of numbers beginning at 2 and ending at 100, incremented by 2.
seq(from = 2, to = 100, by = 2)

[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
[20] 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76
[39] 78 80 82 84 86 88 90 92 94 96 98 100

and

# Create a sequence of numbers beginning at 2 and ending at 100, incremented by 2.
seq(to = 100, by = 2, from = 2)

[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
[20] 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76
[39] 78 80 82 84 86 88 90 92 94 96 98 100

return the exact same values. Why? Because we explicitly told R which argument to pass
each value to by name. Of course, just because we can do something doesn’t mean we should
do it. We really shouldn’t rearrange argument order like this unless there is a good reason.

4.5 Objects

In addition to functions, the R programming language also includes objects. In the Navigating
RStudio chapter we created an object called x with a value of 2 using the x <- 2 R code. In
general, you can think of objects as anything that lives in your R global environment. Objects
may be single variables (also called vectors in R) or entire data sets (also called data frames
in R).

Objects can be a confusing concept at first. We think it’s because it is hard to precisely define
exactly what an object is. We’ll say two things about this. First, you’re probably overthinking
it (because we’ve overthought it too). When we use R, we create and save stuff. We have to
call that stuff something in order to talk about it or write books about it. Somebody decided
we would call that stuff “objects.” The second thing we’ll say is that this becomes much less
abstract when we finally get to a place where you can really get your hands dirty doing some
R programming.
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Figure 4.4: Creating the x object.

Sometimes it can be useful to relate the R language to English grammar. That is, when you
are writing R code you can roughly think of functions as verbs and objects as nouns. Just like
nouns are things in the English language, and verbs do things in the English language, objects
are things and functions do things in the R language.

So, in the x <- 2 command x is the object and <- is the function. “Wait! Didn’t you just tell
us that functions will be a word followed by parentheses?” Fair question. Technically, we said,
“Most functions will be a word, or word part, followed by parentheses.” Just like English, R
has exceptions. All operators in R are also functions. Operators are symbols like +, -, =, and
<-. There are many more operators, but you will notice that they all do things. In this case,
they add, subtract, and assign values to objects.
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4.6 Comments

And finally, there are comments. If our R code is a conversation we are having with the
R interpreter, then comments are your inner thoughts taking place during the conversation.
Comments don’t actually mean anything to R, but they will be extremely important for you.
You actually already saw a couple examples of comments above.

# Store the value 2 in the variable x
x <- 2
# Print the contents of x to the screen
x

[1] 2

In this code chunk, “# Store the value 2 in the variable x” and “# Print the contents of x to
the screen” are both examples of comments. Notice that they both start with the pound or
hash sign (#). The R interpreter will ignore anything on the current line that comes after the
hash sign. A carriage return (new line) ends the comment. However, comments don’t have to
be written on their own line. They can also be written on the same line as R code as long as
put them after the R code, like this:
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x <- 2 # Store the value 2 in the variable x
x # Print the contents of x to the screen

[1] 2

Most beginning R programmers underestimate the importance of comments. In the silly little
examples above, the comments are not that useful. However, comments will become extremely
important as you begin writing more complex programs. When working on projects, you will
often need to share your programs with others. Reading R code without any context is really
challenging – even for experienced R programmers. Additionally, even if your collaborators
can surmise what your R code is doing, they may have no idea why you are doing it. Therefore,
your comments should tell others what your code does (if it isn’t completely obvious), and
more importantly, what your code is trying to accomplish. Even if you aren’t sharing your
code with others, you may need to come back and revise or reuse your code months or years
down the line. You may be shocked at how foreign the code you wrote will seem months or
years after you wrote it. Therefore, comments are not just important for others, they are also
important for future you!

Note

�Side Note: RStudio has a handy little keyboard shortcut for creating comments. On
a Mac, type shift + command + C. On Windows, Shift + Ctrl + C.

Note

�Side Note: Please put a space in between the pound/hash sign and the rest of your
text when writing comments. For example, # here is my comment instead of #here is
my comment. It just makes the comment easier to read.

4.7 Packages

In addition to being a functional programming language, R is also a type of programming
language called an open source programming language. For our purposes, this has two big
advantages. First, it means that R is FREE! Second, it means that smart people all around
the world get to develop new packages for the R language that can do cutting edge and/or
very niche things.

That second advantage is probably really confusing if this is not a concept you are already
familiar with. For example, when you install Microsoft Word on your computer all the code
that makes that program work is owned and Maintained by the Microsoft corporation. If you
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need Word to do something that it doesn’t currently do, your only option is to make a feature
request on Microsoft’s website. Microsoft may or may not every get around to fulfilling that
request.

R works a little differently. When you downloaded R from the CRAN website, you actually
downloaded something called Base R. Base R is maintained by the R Core Team. However,
anybody – even you – can write your own code (called packages) that add new functions to
the R syntax. Like all functions, these new functions allow you to do things that you can’t do
(or can’t do as easily) with Base R.

An analogy that we really like here is used by Ismay and Kim in ModernDive.

A good analogy for R packages is they are like apps you can download onto a
mobile phone. So R is like a new mobile phone: while it has a certain amount of
features when you use it for the first time, it doesn’t have everything. R packages
are like the apps you can download onto your phone from Apple’s App Store or
Android’s Google Play.1

So, when you get a new smart phone it comes with apps for making phone calls, checking
email, and sending text messages. But, what if you want to listen to music on Spotify? You
may or may not be able to do that through your phone’s web browser, but it’s way more
convenient and powerful to download and install the Spotify app.

In this course, we will make extensive use of packages developed by people and teams outside of
the R Core Team. In particular, we will use a number of related packages that are collectively
known as the Tidyverse. One of the most popular packages in the tidyverse collection (and one
of the most popular R packages overall) is called the dplyr package for data management.

In the same way that you have to download and install Spotify on your mobile phone before
you can use it, you have to download and install new R packages on your computer before you
can use the functions they contain. Fortunately, R makes this really easy. For most packages,
all you have to do is run the install.packages() function in the R console. For example,
here is how you would install the dplyr package.

# Make sure you remember to wrap the name of the package in single or double quotes.
install.packages("dplyr")

Over time, you will download and install a lot of different packages. All those packages with
all of those new functions start to create a lot of overhead. Therefore, R doesn’t keep them
loaded and available for use at all times. Instead, every time you open RStudio, you will have
to explicitly tell R which packages you want to use. So, when you close RStudio and open it
again, the only functions that you will be able to use are Base R functions. If you want to use
functions from any other package (e.g., dplyr) you will have to tell R that you want to do so
using the library() function.
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# No quotes needed here
library(dplyr)

Technically, loading the package with the library() function is not the only way to use
a function from a package you’ve downloaded. For example, the dplyr package contains a
function called filter() that helps us keep or drop certain rows in a data frame. To use this
function, we have to first download the dplyr package. Then we can use the filter function in
one of two different ways.

library(dplyr)
filter(states_data, state == "Texas") # Keeps only the rows from Texas

The first way you already saw above. Load all the functions contained in the dplyr package
using the library() function. Then use that function just like any other Base R function.

The second way is something called the double colon syntax. To use the double colon
syntax, you type the package name, two colons, and the name of the function you want to use
from the package. Here is an example of the double colon syntax.

dplyr::filter(states_data, state == "Texas") # Keeps only the rows from Texas

Most of the time you will load packages using the library() function. However, we wanted
to show you the double colon syntax because you may come across it when you are reading R
documentation and because there are times when it makes sense to use this syntax.

4.8 Programming style

Finally, we want to discuss programming style. R can read any code you write as long as
you write it using valid R syntax. However, R code can be much easier or harder for people
(including you) to read depending on how it’s written. The coding best practices chapter of
this book gives complete details on writing R code that is as easy as possible for people to
read. So, please make sure to read it. It will make things so much easier for all of us!
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5 Let’s Get Programming

In this chapter, we are going to tie together many of the concepts we’ve learned so far, and you
are going to create your first basic R program. Specifically, you are going to write a program
that simulates some data and analyzes it.

5.1 Simulating data

Data simulation can be really complicated, but it doesn’t have to be. It is simply the process
of creating data as opposed to finding data in the wild. This can be really useful in several
different ways.

1. Simulating data is really useful for getting help with a problem you are trying to solve.
Often, it isn’t feasible for you to send other people the actual data set you are working
on when you encounter a problem you need help with. Sometimes, it may not even be
legally allowed (i.e., for privacy reasons). Instead of sending them your entire data set,
you can simulate a little data set that recreates the challenge you are trying to address
without all the other complexity of the full data set. As a bonus,we have often found that
we end up figuring out the solution to the problem we’re trying to solve as we recreate
the problem in a simulated data set that we intended to share with others.

2. Simulated data can also be useful for learning about and testing statistical assumptions.
In epidemiology, we use statistics to draw conclusions about populations of people we
are interested in based on samples of people drawn from the population. Because we
don’t actually have data from all the people in the population, we have to make some
assumptions about the population based on what we find in our sample. When we
simulate data, we know the truth about our population because we created our population
to have that truth. We can then use this simulated population to play “what if” games
with our analysis. What if we only sampled half as many people? What if their heights
aren’t actually normally distributed? What if we used a probit model instead of a logit
model? Going through this process and answering these questions can help us understand
how much, and under what circumstances, we can trust the answers we found in the real
world.

So, let’s go ahead and write a complete R program to simulate and analyze some data. As we
said, it doesn’t have to be complicated. In fact, in just a few lines of R code below we simulate
and analyze some data about a hypothetical class.
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class <- data.frame(
names = c("John", "Sally", "Brad", "Anne"),
heights = c(68, 63, 71, 72)

)

class

names heights
1 John 68
2 Sally 63
3 Brad 71
4 Anne 72

mean(class$heights)

[1] 68.5

As you can see, this data frame contains the students’ names and heights. We also use the
mean() function to calculate the average height of the class. By the end of this chapter, you
will understand all the elements of this R code and how to simulate your own data.

5.2 Vectors

Vectors are the most fundamental data structure in R. Here, data structure means “container
for our data.” There are other data structures as well; however, they are all built from vectors.
That’s why we say vectors are the most fundamental data structure. Some of these other
structures include matrices, lists, and data frames. In this book, we won’t use matrices or
lists much at all, so you can forget about them for now. Instead, we will almost exclusively
use data frames to hold and manipulate our data. However, because data frames are built
from vectors, it can be useful to start by learning a little bit about them. Let’s create our first
vector now.

# Create an example vector
names <- c("John", "Sally", "Brad", "Anne")
# Print contents to the screen
names

[1] "John" "Sally" "Brad" "Anne"
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�Here’s what we did above:

• We created a vector of names with the c() (short for combine) function.

– The vector contains four values: “John”, “Sally”, “Brad”, and “Anne”.

– All of the values are character strings (i.e., words). We know this because all of the
values are wrapped with quotation marks.

– Here we used double quotes above, but we could have also used single quotes.
We cannot, however, mix double and single quotes for each character string. For
example, c("John', ...) won’t work.

• We assigned that vector of character strings to the word names using the <- function.

– R now recognizes names as an object that we can do things with.

– R programmers may refer to the names object as “the names object”, “the names
vector”, or “the names variable”. For our purposes, these all mean the same thing.

• We printed the contents of the names object to the screen by typing the word “names”.

– R returns (shows us) the four character values (“John” “Sally” “Brad” “Anne”)
on the computer screen.

Try copying and pasting the code above into the RStudio console on your computer. You
should notice the names vector appear in your global environment. You may also notice
that the global environment pane gives you some additional information about this vector
to the right of its name. Specifically, you should see chr [1:4] "John" "Sally" "Brad"
"Anne". This is R telling us that names is a character vector (chr), with four values ([1:4]),
and the first four values are "John" "Sally" "Brad" "Anne".

5.2.1 Vector types

There are several different vector types, but each vector can have only one type. The type of
the vector above was character. We can validate that with the typeof() function like so:

typeof(names)

[1] "character"

The other vector types that we will use in this book are double, integer, and logical. Double
vectors hold real numbers and integer vectors hold integers. Collectively, double vectors and
integer vectors are known as numeric vectors. Logical vectors can only hold the values TRUE
and FALSE. Here are some examples of each:
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5.2.2 Double vectors

# A numeric vector
my_numbers <- c(12.5, 13.98765, pi)
my_numbers

[1] 12.500000 13.987650 3.141593

typeof(my_numbers)

[1] "double"

5.2.3 Integer vectors

Creating integer vectors involves a weird little quirk of the R language. For some reason, and
we have no idea why, we must type an “L” behind the number to make it an integer.

# An integer vector - first attempt
my_ints_1 <- c(1, 2, 3)
my_ints_1

[1] 1 2 3

typeof(my_ints_1)

[1] "double"

# An integer vector - second attempt
# Must put "L" behind the number to make it an integer. No idea why they chose "L".
my_ints_2 <- c(1L, 2L, 3L)
my_ints_2

[1] 1 2 3

typeof(my_ints_2)

[1] "integer"
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5.2.4 Logical vectors

# A logical vector
# Type TRUE and FALSE in all caps
my_logical <- c(TRUE, FALSE, TRUE)
my_logical

[1] TRUE FALSE TRUE

typeof(my_logical)

[1] "logical"

Rather than have an abstract discussion about the particulars of each of these vector types
right now, we think it’s best to wait and learn more about them when they naturally arise
in the context of a real challenge we are trying to solve with data. At this point, just having
some vague idea that they exist is good enough.

5.2.5 Factor vectors

Above, we said that we would only work with three vector types in this book: double, integer,
and logical. Technically, that is true. Factors aren’t technically a vector type (we will explain
below) but calling them a vector type is close enough to true for our purposes. We will
briefly introduce you to factors here, and then discuss them in more depth later in the chapter
on [Numerical Descriptions of Categorical Variables]. We cover them in greater depth there
because factors are most useful in the context of working with categorical data – data that
is grouped into discrete categories. Some examples of categorical variables commonly seen in
public health data are sex, race or ethnicity, and level of educational attainment.

In R, we can represent a categorical variable in multiple different ways. For example, let’s say
that we are interested in recording people’s highest level of formal education completed in our
data. The discrete categories we are interested in are:

• 1 = Less than high school

• 2 = High school graduate

• 3 = Some college

• 4 = College graduate
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We could then create a numeric vector to record the level of educational attainment for four
hypothetical people as shown below.

# A numeric vector of education categories
education_num <- c(3, 1, 4, 1)
education_num

[1] 3 1 4 1

But what is less-than-ideal about storing our categorical data this way? Well, it isn’t obvious
what the numbers in education_num mean. For the purposes of this example, we defined
them above, but if we didn’t have that information then we would likely have no idea what
categories the numbers represent.

We could also create a character vector to record the level of educational attainment for four
hypothetical people as shown below.

# A character vector of education categories
education_chr <- c(
"Some college", "Less than high school", "College graduate",
"Less than high school"

)
education_chr

[1] "Some college" "Less than high school" "College graduate"
[4] "Less than high school"

But this strategy also has a few limitations that we will discuss in in the chapter on [Numerical
Descriptions of Categorical Variables]. For now, we just need to quickly learn how to create
and identify factor vectors.

Typically, we don’t create factors from scratch. Instead, we typically convert (or “coerce”) an
existing numeric or character vector into a factor. For example, we can coerce education_num
to a factor like this:

# Coerce education_num to a factor
education_num_f <- factor(
x = education_num,
levels = 1:4,
labels = c(

"Less than high school", "High school graduate", "Some college",
"College graduate"
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)
)
education_num_f

[1] Some college Less than high school College graduate
[4] Less than high school
4 Levels: Less than high school High school graduate ... College graduate

� Here’s what we did above:

• We used the factor() function to create a new factor version of education_num.

– You can type ?factor into your R console to view the help documentation for this
function and follow along with the explanation below.

– The first argument to the factor() function is the x argument. The value passed
to the x argument should be a vector of data. We passed the education_num vector
to the x argument.

– The second argument to the factor() function is the levels argument. This
argument tells R the unique values that the new factor variable can take. We used
the shorthand 1:4 to tell R that education_num_f can take the unique values 1,
2, 3, or 4.

– The third argument to the factor() function is the labels argument. The value
passed to the labels argument should be a character vector of labels (i.e., descrip-
tive text) for each value in the levels argument. The order of the labels in the
character vector we pass to the labels argument should match the order of the
values passed to the levels argument. For example, the ordering of levels and
labels above tells R that 1 should be labeled with “Less than high school”, 2
should be labeled with “High school graduate”, etc.

• We used the assignment operator (<-) to save our new factor vector in our global envi-
ronment as education_num_f.

– If we had used the name education_num instead, then the previous values in the
education_num vector would have been replaced with the new values. That is
sometimes what we want to happen. However, when it comes to creating factors,
we typically keep the numeric version of the vector and create an additional factor
version of the vector. We just often find that it can be useful to have both versions
of the variable hanging around during the analysis process.

– We also use the _f naming convention in our code. That means that when we create
a new factor vector, we name it the same thing the original vector was named with
the addition of _f (for factor) at the end.
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• We printed the vector to the screen. The values in education_num_f look similar to
the character strings displayed in education_chr. Notice, however, that the values no
longer have quotes around them and R displays Levels: Less than high school High
school graduate Some college College graduate below the data values. This is R
telling us the possible categorical values that this factor could take on. This is a telltale
sign that the vector being printed to the screen is a factor.

Interestingly, although R uses labels to make factors look like character vectors, they are still
integer vectors under the hood. For example:

typeof(education_num_f)

[1] "integer"

And we can still view them as such.

as.numeric(education_num_f)

[1] 3 1 4 1

It is also possible to coerce character vectors to factors. For example, we can coerce
education_chr to a factor like so:

# Coerce education_chr to a factor
education_chr_f <- factor(
x = education_chr,
levels = c(

"Less than high school", "High school graduate", "Some college",
"College graduate"

)
)
education_chr_f

[1] Some college Less than high school College graduate
[4] Less than high school
4 Levels: Less than high school High school graduate ... College graduate

� Here’s what we did above:

• We coerced a character vector (education_chr) to a factor using the factor() function.
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• Because the levels are character strings, there was no need to pass any values to the
labels argument this time. Keep in mind, though, that the order of the values passed
to the levels argument matters. It will be the order that the factor levels will be
displayed in our analyses.

You might reasonably wonder why we would want to convert character vectors to factors,
but we will save that discussion for the chapter on [Numerical Descriptions of Categorical
Variables].

5.3 Data frames

Vectors are useful for storing a single characteristic where all the data is of the same type.
However, in epidemiology, we typically want to store information about many different char-
acteristics of whatever we happen to be studying. For example, we didn’t just want the names
of the people in our class, we also wanted the heights. Of course, we can also store the heights
in a vector like so:

heights <- c(68, 63, 71, 72)
heights

[1] 68 63 71 72

But this vector, in and of itself, doesn’t tell us which height goes with which person. When
we want to create relationships between our vectors, we can use them to build a data frame.
For example:

# Create a vector of names
names <- c("John", "Sally", "Brad", "Anne")
# Create a vector of heights
heights <- c(68, 63, 71, 72)
# Combine them into a data frame
class <- data.frame(names, heights)
# Print the data frame to the screen
class

names heights
1 John 68
2 Sally 63
3 Brad 71
4 Anne 72
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�Here’s what we did above:

• We created a data frame with the data.frame() function.

– The first argument we passed to the data.frame() function was a vector of names
that we previously created.

– The second argument we passed to the data.frame() function was a vector of
heights that we previously created.

• We assigned that data frame to the word class using the <- function.

– R now recognizes class as an object that we can do things with.

– R programmers may refer to this class object as “the class object” or “the class
data frame”. For our purposes, these all mean the same thing. We could also call
it a data set, but that term isn’t used much in R circles.

• We printed the contents of the class object to the screen by typing the word “class”.

– R returns (shows us) the data frame on the computer screen.

Try copying and pasting the code above into the RStudio console on your computer. You
should notice the class data frame appear in your global environment. You may also
notice that the global environment pane gives you some additional information about this
data frame to the right of its name. Specifically, you should see 4 obs. of 2 variables.
This is R telling us that class has four rows or observations (4 obs.) and two columns or
variables (2 variables). If you click the little blue arrow to the left of the data frame’s name,
you will see information about the individual vectors that make up the data frame.

As a shortcut, instead of creating individual vectors and then combining them into a data
frame as we’ve done above, most R programmers will create the vectors (columns) directly
inside of the data frame function like this:

# Create the class data frame
class <- data.frame(
names = c("John", "Sally", "Brad", "Anne"),
heights = c(68, 63, 71, 72)

) # Closing parenthesis down here.

# Print the data frame to the screen
class

87



names heights
1 John 68
2 Sally 63
3 Brad 71
4 Anne 72

As you can see, both methods produce the exact same result. The second method, however,
requires a little less typing and results in fewer objects cluttering up your global environment.
What we mean by that is that the names and heights vectors won’t exist independently in
your global environment. Rather, they will only exist as columns of the class data frame.

You may have also noticed that when we created the names and heights vectors (columns)
directly inside of the data.frame() function we used the equal sign (=) to assign values instead
of the assignment arrow (<-). This is just one of those quirky R exceptions we talked about
in the chapter on speaking R’s language. In fact, = and <- can be used interchangeably in R.
It is only by convention that we usually use <- for assigning values, but use = for assigning
values to columns in data frames. we don’t know why this is the convention. If it were up to
me, we wouldn’t do this. We would just pick = or <- and use it in all cases where we want
to assign values. But, it isn’t up to me and we gave up on trying to fight it a long time ago.
Your R programming life will be easier if you just learn to assign values this way – even if it’s
dumb. �

Warning

By definition, all columns in a data frame must have the same length (i.e., number of
rows). That means that each vector you create when building your data frame must have
the same number of values in it. For example, the class data frame above has four names
and four heights. If we had only entered three heights, we would have gotten the follow-
ing error: Error in data.frame(names = c("John", "Sally", "Brad", "Anne"),
heights = c(68, : arguments imply differing number of rows: 4, 3

5.4 Tibbles

Tibbles are a data structure that come from another tidyverse package – the tibble package.
Tibbles are data frames and serve the same purpose in R that data frames serve; however,
they are enhanced in several ways. � You are welcome to look over the tibble documentation
or the tibbles chapter in R for Data Science if you are interested in learning about all the
differences between tibbles and data frames. For our purposes, there are really only a couple
things we want you to know about tibbles right now.
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First, tibbles are a part of the tibble package – NOT base R. Therefore, we have to install
and load either the tibble package or the dplyr package (which loads the tibble package for
us behind the scenes) before we can create tibbles. we typically just load the dplyr package.

# Install the dplyr package. YOU ONLY NEED TO DO THIS ONE TIME.
install.packages("dplyr")

# Load the dplyr package. YOU NEED TO DO THIS EVERY TIME YOU START A NEW R SESSION.
library(dplyr)

Second, we can create tibbles using one of three functions: as_tibble(), tibble(), or
tribble(). I’ll show you some examples shortly.

Third, try not to be confused by the terminology. Remember, tibbles are data frames. They
are just enhanced data frames.

5.4.1 The as_tibble function

We use the as_tibble() function to turn an already existing basic data frame into a tibble.
For example:

# Create a data frame
my_df <- data.frame(
name = c("john", "alexis", "Steph", "Quiera"),
age = c(24, 44, 26, 25)

)

# Print my_df to the screen
my_df

name age
1 john 24
2 alexis 44
3 Steph 26
4 Quiera 25

# View the class of my_df
class(my_df)

[1] "data.frame"
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�Here’s what we did above:

• We used the data.frame() function to create a new data frame called my_df.

• We used the class() function to view my_df’s class (i.e., what kind of object it is).

– The result returned by the class() function tells us that my_df is a data frame.

# Use as_tibble() to turn my_df into a tibble
my_df <- as_tibble(my_df)

# Print my_df to the screen
my_df

# A tibble: 4 x 2
name age
<chr> <dbl>

1 john 24
2 alexis 44
3 Steph 26
4 Quiera 25

# View the class of my_df
class(my_df)

[1] "tbl_df" "tbl" "data.frame"

�Here’s what we did above:

• We used the as_tibble() function to turn my_df into a tibble.

• We used the class() function to view my_df’s class (i.e., what kind of object it is).

– The result returned by the class() function tells us that my_df is still a data frame,
but it is also a tibble. That’s what “tbl_df” and “tbl” mean.

5.4.2 The tibble function

We can use the tibble() function in place of the data.frame() function when we want to
create a tibble from scratch. For example:
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# Create a data frame
my_df <- tibble(
name = c("john", "alexis", "Steph", "Quiera"),
age = c(24, 44, 26, 25)

)

# Print my_df to the screen
my_df

# A tibble: 4 x 2
name age
<chr> <dbl>

1 john 24
2 alexis 44
3 Steph 26
4 Quiera 25

# View the class of my_df
class(my_df)

[1] "tbl_df" "tbl" "data.frame"

�Here’s what we did above:

• We used the tibble() function to create a new tibble called my_df.

• We used the class() function to view my_df’s class (i.e., what kind of object it is).

– The result returned by the class() function tells us that my_df is still a data frame,
but it is also a tibble. That’s what “tbl_df” and “tbl” mean.

5.4.3 The tribble function

Alternatively, we can use the tribble() function in place of the data.frame() function when
we want to create a tibble from scratch. For example:

# Create a data frame
my_df <- tribble(
~name, ~age,
"john", 24,
"alexis", 44,

91



"Steph", 26,
"Quiera", 25

)

# Print my_df to the screen
my_df

# A tibble: 4 x 2
name age
<chr> <dbl>

1 john 24
2 alexis 44
3 Steph 26
4 Quiera 25

# View the class of my_df
class(my_df)

[1] "tbl_df" "tbl" "data.frame"

�Here’s what we did above:

• We used the tribble() function to create a new tibble called my_df.

• We used the class() function to view my_df’s class (i.e., what kind of object it is).

– The result returned by the class() function tells us that my_df is still a data frame,
but it is also a tibble. That’s what “tbl_df” and “tbl” mean.

• There is absolutely no difference between the tibble we created above with the tibble()
function and the tibble we created above with the tribble() function. The only dif-
ference between the two functions is the syntax we used to pass the column names and
data values to each function.

– When we use the tibble() function, we pass the data values to the function hori-
zontally as vectors. This is the same syntax that the data.frame() function expects
us to use.

– When we use the tribble() function, we pass the data values to the function
vertically instead. The only reason this function exists is because it can sometimes
be more convenient to type in our data values this way. That’s it.

– Remember to type a tilde (“~”) in front of your column names when using the
tribble() function. For example, type ~name instead of name. That’s how R
knows you’re giving it a column name instead of a data value.
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5.4.4 Why use tibbles

At this point, some students wonder, “If tibbles are just data frames, why use them? Why not
just use the data.frame() function?” That’s a fair question. As we have said multiple times
already, tibbles are enhanced. However, we don’t believe that going into detail about those
enhancements is going to be useful to most of you at this point – and may even be confusing.
But, we will show you one quick example that’s pretty self-explanatory.

Let’s say that we are given some data that contains four people’s age in years. We want to
create a data frame from that data. However, let’s say that we also want a column in our new
data frame that contains those same ages in months. Well, we could do the math ourselves. We
could just multiply each age in years by 12 (for the sake of simplicity, assume that everyone’s
age in years is gathered on their birthday). But, we’d rather have R do the math for us. We
can do so by asking R to multiply each value of the the column called age_years by 12. Take
a look:

# Create a data frame using the data.frame() function
my_df <- data.frame(
name = c("john", "alexis", "Steph", "Quiera"),
age_years = c(24, 44, 26, 25),
age_months = age_years * 12

)

Error in eval(expr, envir, enclos): object 'age_years' not found

Uh, oh! We got an error! This error says that the column age_years can’t be found. How can
that be? We are clearly passing the column name age_years to the data.frame() function
in the code chunk above. Unfortunately, the data.frame() function doesn’t allow us to create
and refer to a column name in the same function call. So, we would need to break this task
up into two steps if we wanted to use the data.frame() function. Here’s one way we could
do this:

# Create a data frame using the data.frame() function
my_df <- data.frame(
name = c("john", "alexis", "Steph", "Quiera"),
age_years = c(24, 44, 26, 25)

)

# Add the age in months column to my_df
my_df <- my_df %>% mutate(age_months = age_years * 12)

# Print my_df to the screen
my_df
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name age_years age_months
1 john 24 288
2 alexis 44 528
3 Steph 26 312
4 Quiera 25 300

Alternatively, we can use the tibble() function to get the result we want in just one step like
so:

# Create a data frame using the tibble() function
my_df <- tibble(
name = c("john", "alexis", "Steph", "Quiera"),
age_years = c(24, 44, 26, 25),
age_months = age_years * 12

)

# Print my_df to the screen
my_df

# A tibble: 4 x 3
name age_years age_months
<chr> <dbl> <dbl>

1 john 24 288
2 alexis 44 528
3 Steph 26 312
4 Quiera 25 300

In summary, tibbles are data frames. For the most part, we will use the terms “tibble” and
“data frame” interchangeably for the rest of the book. However, remember that tibbles are
enhanced data frames. Therefore, there are some things that we will do with tibbles that we
can’t do with basic data frames.

5.5 Missing data

As indicated in the warning box at the end of the data frames section of this chapter, all
columns in our data frames have to have the same length. So what do we do when we are
truly missing information in some of our observations? For example, how do we create the
class data frame if we are missing Anne’s height for some reason?

In R, we represent missing data with an NA. For example:

94



# Create the class data frame
data.frame(
names = c("John", "Sally", "Brad", "Anne"),
heights = c(68, 63, 71, NA) # Now we are missing Anne's height

)

names heights
1 John 68
2 Sally 63
3 Brad 71
4 Anne NA

Warning

Make sure you capitalize NA and don’t use any spaces or quotation marks. Also, make
sure you use NA instead of writing "Missing" or something like that.

By default, R considers NA to be a logical-type value (as opposed to character or numeric). for
example:

typeof(NA)

[1] "logical"

However, you can tell R to make NA a different type by using one of the more specific forms of
NA. For example:

typeof(NA_character_)

[1] "character"

typeof(NA_integer_)

[1] "integer"

typeof(NA_real_)

[1] "double"
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Most of the time, you won’t have to worry about doing this because R will take care of
converting NA for you. What do we mean by that? Well, remember that every vector can have
only one type. So, when you add an NA (logical by default) to a vector with double values
as we did above (i.e., c(68, 63, 71, NA)), that would cause you to have three double values
and one logical value in the same vector, which is not allowed. Therefore, R will automatically
convert the NA to NA_real_ for you behind the scenes.

This is a concept known as “type coercion” and you can read more about it here if you are
interested. As we said, most of the time you don’t have to worry about type coercion – it will
happen automatically. But, sometimes it doesn’t and it will cause R to give you an error. we
mostly encounter this when using the if_else() and case_when() functions, which we will
discuss later.

5.6 Our first analysis

Congratulations on your new R programming skills. � You can now create vectors and data
frames. This is no small thing. Basically, everything else we do in this book will start with
vectors and data frames.

Having said that, just creating data frames may not seem super exciting. So, let’s round out
this chapter with a basic descriptive analysis of the data we simulated. Specifically, let’s find
the average height of the class.

You will find that in R there are almost always many different ways to accomplish a given
task. Sometimes, choosing one over another is simply a matter of preference. Other times,
one method is clearly more efficient and/or accurate than another. This is a point that will
come up over and over in this book. Let’s use our desire to find the mean height of the class
as an example.

5.6.1 Manual calculation of the mean

For starters, we can add up all the heights and divide by the total number of heights to find
the mean.

(68 + 63 + 71 + 72) / 4

[1] 68.5

�Here’s what we did above:

• We used the addition operator (+) to add up all the heights.
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• We used the division operator (/) to divide the sum of all the heights by 4 - the number
of individual heights we added together.

• We used parentheses to enforce the correct order of operations (i.e., make R do addition
before division).

This works, but why might it not be the best approach? Well, for starters, manually typing in
the heights is error prone. We can easily accidently press the wrong key. Luckily, we already
have the heights stored as a column in the class data frame. We can access or refer to a
single column in a data frame using the dollar sign notation.

5.6.2 Dollar sign notation

class$heights

[1] 68 63 71 72

�Here’s what we did above:

• We used the dollar sign notation to access the heights column in the class data frame.

– Dollar sign notation is just the data frame name, followed by the dollar sign, followed
by the column name.

5.6.3 Bracket notation

Further, we can use bracket notation to access each value in a vector. we think it’s easier to
demonstrate bracket notation than it is to describe it. For example, we could access the third
value in the names vector like this:

# Create the heights vector
heights <- c(68, 63, 71, 72)

# Bracket notation
# Access the third element in the heights vector with bracket notation
heights[3]

[1] 71
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Remember, that data frame columns are also vectors. So, we can combine the dollar sign
notation and bracket notation, to access each individual value of the height column in the
class data frame. This will help us get around the problem of typing each individual height
value. For example:

# First way to calculate the mean
# (68 + 63 + 71 + 72) / 4

# Second way. Use dollar sign notation and bracket notation so that we don't
# have to type individual heights
(class$heights[1] + class$heights[2] + class$heights[3] + class$heights[4]) / 4

[1] 68.5

5.6.4 The sum function

The second method is better in the sense that we no longer have to worry about mistyping the
heights. However, who wants to type class$heights[...] over and over? What if we had a
hundred numbers? What if we had a thousand numbers? This wouldn’t work. Luckily, there
is a function that adds all the numbers contained in a numeric vector – the sum() function.
Let’s take a look:

# Create the heights vector
heights <- c(68, 63, 71, 72)

# Add together all the individual heights with the sum function
sum(heights)

[1] 274

Remember, that data frame columns are also vectors. So, we can combine the dollar sign
notation and sum() function, to add up all the individual heights in the heights column of
the class data frame. It looks like this:

# First way to calculate the mean
# (68 + 63 + 71 + 72) / 4

# Second way. Use dollar sign notation and bracket notation so that we don't
# have to type individual heights
# (class$heights[1] + class$heights[2] + class$heights[3] + class$heights[4]) / 4
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# Third way. Use dollar sign notation and sum function so that we don't have
# to type as much
sum(class$heights) / 4

[1] 68.5

�Here’s what we did above:

• We passed the numeric vector heights from the class data frame to the sum() function
using dollar sign notation.

• The sum() function returned the total value of all the heights added together.

• We divided the total value of the heights by four – the number of individual heights.

5.6.5 Nesting functions

!! Before we move on, we want to point out something that is actually kind of a big deal.
In the third method above, we didn’t manually add up all the individual heights - R did this
calculation for us. Further, we didn’t store the sum of the individual heights somewhere and
then divide that stored value by 4. Heck, we didn’t even see what the sum of the individual
heights were. Instead, the returned value from the sum function (274) was used directly in
the next calculation (/ 4) by R without us seeing the result. In other words, (68 + 63 +
71 + 72) / 4, 274 / 4, and sum(class$heights) / 4 are all exactly the same thing to R.
However, the third method (sum(class$heights) / 4) is much more scalable (i.e., adding
a lot more numbers doesn’t make this any harder to do) and much less error prone. Just to be
clear, the BIG DEAL is that we now know that the values returned by functions can be directly
passed to other functions in exactly the same way as if we typed the values ourselves.

This concept, functions passing values to other functions is known as nesting functions. It’s
called nesting functions because we can put functions inside of other functions.

“But, Brad, there’s only one function in the command sum(class$heights) / 4 – the sum()
function.” Really? Is there? Remember when we said that operators are also functions in
R? Well, the division operator is a function. And, like all functions it can be written with
parentheses like this:

# Writing the division operator as a function with parentheses
`/`(8, 4)

[1] 2
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�Here’s what we did above:

• We wrote the division operator in its more function-looking form.

– Because the division operator isn’t a letter, we had to wrap it in backticks (‘).

– The backtick key is on the top left corner of your keyboard near the escape key
(esc).

– The first argument we passed to the division function was the dividend (The number
we want to divide).

– The second argument we passed to the division function was the divisor (The num-
ber we want to divide by).

So, the following two commands mean exactly the same thing to R:

8 / 4

`/`(8, 4)

And if we use this second form of the division operator, we can clearly see that one function
is nested inside another function.

`/`(sum(class$heights), 4)

[1] 68.5

�Here’s what we did above:

• We calculated the mean height of the class.

– The first argument we passed to the division function was the returned value from
the sum() function.

– The second argument we passed to the division function was the divisor (4).

This is kind of mind-blowing stuff the first time you encounter it. � we wouldn’t blame you
if you are feeling overwhelmed or confused. The main points to take away from this section
are:

1. Everything we do in R, we will do with functions. Even operators are functions, and
they can be written in a form that looks function-like; however, we will almost never
actually write them in that way.
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2. Functions can be nested. This is huge because it allows us to directly pass returned
values to other functions. Nesting functions in this way allows us to do very complex
operations in a scalable way and without storing a bunch of unneeded values that are
created in the intermediate steps of the operation.

3. The downside of nesting functions is that it can make our code difficult to read - especially
when we nest many functions. Fortunately, we will learn to use the pipe operator (%>%)
in the workflow basics part of this book. Once you get used to pipes, they will make
nested functions much easier to read.

Now, let’s get back to our analysis…

5.6.6 The length function

We think most of us would agree that the third method we learned for calculating the mean
height is preferable to the first two methods for most situations. However, the third method
still requires us to know how many individual heights are in the heights column (i.e., 4).
Luckily, there is a function that tells us how many individual values are contained in a vector
– the length() function. Let’s take a look:

# Create the heights vector
heights <- c(68, 63, 71, 72)

# Return the number of individual values in heights
length(heights)

[1] 4

Remember, that data frame columns are also vectors. So, we can combine the dollar sign
notation and length() function to automatically calculate the number of values in the heights
column of the class data frame. It looks like this:

# First way to calculate the mean
# (68 + 63 + 71 + 72) / 4

# Second way. Use dollar sign notation and bracket notation so that we don't
# have to type individual heights
# (class$heights[1] + class$heights[2] + class$heights[3] + class$heights[4]) / 4

# Third way. Use dollar sign notation and sum function so that we don't have
# to type as much
# sum(class$heights) / 4
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# Fourth way. Use dollar sign notation with the sum function and the length
# function
sum(class$heights) / length(class$heights)

[1] 68.5

�Here’s what we did above:

• We passed the numeric vector heights from the class data frame to the sum() function
using dollar sign notation.

• The sum() function returned the total value of all the heights added together.

• We passed the numeric vector heights from the class data frame to the length()
function using dollar sign notation.

• The length() function returned the total number of values in the heights column.

• We divided the total value of the heights by the total number of values in the heights
column.

5.6.7 The mean function

The fourth method above is definitely the best method yet. However, this need to find the
mean value of a numeric vector is so common that someone had the sense to create a function
that takes care of all the above steps for us – the mean() function. And as you probably saw
coming, we can use the mean function like so:

# First way to calculate the mean
# (68 + 63 + 71 + 72) / 4

# Second way. Use dollar sign notation and bracket notation so that we don't
# have to type individual heights
# (class$heights[1] + class$heights[2] + class$heights[3] + class$heights[4]) / 4

# Third way. Use dollar sign notation and sum function so that we don't have
# to type as much
# sum(class$heights) / 4

# Fourth way. Use dollar sign notation with the sum function and the length
# function
# sum(class$heights) / length(class$heights)
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# Fifth way. Use dollar sign notation with the mean function
mean(class$heights)

[1] 68.5

Congratulations again! You completed your first analysis using R!

5.7 Some common errors

Before we move on, we want to briefly discuss a couple common errors that will frustrate
many of you early in your R journey. You may have noticed that we went out of our way to
differentiate between the heights vector and the heights column in the class data frame. As
annoying as that may have been, we did it for a reason. The heights vector and the heights
column in the class data frame are two separate things to the R interpreter, and you have to
be very specific about which one you are referring to. To make this more concrete, let’s add
a weight column to our class data frame.

class$weight <- c(160, 170, 180, 190)

�Here’s what we did above:

• We created a new column in our data frame – weight – using dollar sign notation.

Now, let’s find the mean weight of the students in our class.

mean(weight)

Error in eval(expr, envir, enclos): object 'weight' not found

Uh, oh! What happened? Why is R saying that weight doesn’t exist? We clearly created it
above, right? Wrong. We didn’t create an object called weight in the code chunk above. We
created a column called weight in the object called class in the code chunk above. Those are
different things to R. If we want to get the mean of weight we have to tell R that weight is
a column in class like so:

mean(class$weight)

[1] 175
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A related issue can arise when you have an object and a column with the same name but
different values. For example:

# An object called scores
scores <- c(5, 9, 3)

# A colummn in the class data frame called scores
class$scores <- c(95, 97, 93, 100)

If you ask R for the mean of scores, R will give you an answer.

mean(scores)

[1] 5.666667

However, if you wanted the mean of the scores column in the class data frame, this won’t
be the correct answer. Hopefully, you already know how to get the correct answer, which is:

mean(class$scores)

[1] 96.25

Again, the scores object and the scores column of the class object are different things to
R.

5.8 Summary

Wow! We covered a lot in this first part of the book on getting started with R and RStudio.
Don’t feel bad if your head is swimming. It’s a lot to take-in. However, you should feel proud
of the fact that you can already do some legitimately useful things with R. Namely, simulate
and analyze data. In the next part of this book, we are going to discuss some tools and
best practices that will make it easier and more efficient for you to write and share your R
code. After that, we will move on to tackling more advanced programming and data analysis
challenges.
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6 Asking Questions

Sooner or later, all of us will inevitably have questions while writing R programs. This is true
for novice R users and experienced R veterans alike. Getting useful answers to programming
questions can be really complicated under the best conditions (i.e., where someone with expe-
rience can physically sit down next to you to interactively work through your code with you).
In reality, getting answers to our coding questions is often further complicated by the fact that
we don’t have access to an experienced R programmer who can sit down next to us and help
us debug our code. Therefore, this chapter will provide us with some guidance for seeking R
programming help remotely. We’re not going to lie, this will likely be a frustrating process at
times, but we will get through it!

An example

Because we like to start with the end in mind, click here for an example of a real post that we
created on Stack Overflow. We will refer back to this post below.

6.1 When should we seek help?

Imagine yourself sitting in front of your computer on a Wednesday afternoon. You are working
on a project that requires the analysis of some data. You know that you need to clean up
your data a little bit before you can do your analysis. For example, maybe you need to drop
all the rows from your data that have a missing value for a set of variables. Before you drop
them, you want to take a look at which rows meet this criterion and what information would
potentially be lost in the process of dropping those rows. In other words, you just want to
view the rows of your data that have a missing value for any variable. Sounds simple enough!
However, you start typing out the code to make this happen and that’s when you start to run
into problems. At this point, the problem you encounter will typically come in one of a few
different flavors.

1. As you sit down to write the code, you realize that you don’t really even know where to
start.

2. You happily start typing out the code that you believe should work, but when you run
the code you get an error message.

3. You happily start typing out the code that you believe should work, but when you run
the code you don’t get the result you were expecting.
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4. You happily start typing out the code that you believe should work and it does! However,
you notice that your solution seems clunky, inefficient, or otherwise less than ideal.

In any of these cases, you will need to figure out what your next step will be. We believe that
there is typically a lot of value in starting out by attempting to solve the problem on your own
without directly asking others for help. Doing so will often lead you to a deeper understanding
of the solution than you would obtain by simply being given the answer. Further, finding the
solution on your own helps you develop problem-solving skills that will be useful for the next
coding problem you encounter – even if the details of that problem are completely different
than the details of your current problem. Having said that, finding a solution on your own does
not mean attempting to do so in a vacuum without the use of any resources (e.g., textbooks,
existing code, or the internet). By all means, use available resources (we suggest some good
ones below)!

On the other hand, we – the authors – have found ourselves stubbornly hacking away on
our own solution to a coding problem long after doing so ceased being productive on many
occasions. We don’t recommend doing this either. We hope that the guidance in this chapter
will provide you with some tools for effectively and efficiently seeking help from the broader
R programming community once you’ve made a sincere effort to solve the problem on your
own.

But, how long should you attempt to solve the problem on your own before reaching out for
help? As far as we know, there are no hard-and-fast rules about how long you should wait
before seeking help with coding problems from others. In reality, the ideal amount of time
to wait is probably dependent on a host of factors including the nature of the problem, your
level of experience, project deadlines, all of your little personal idiosyncrasies, and a whole
host of other factors. Therefore, the best guidance we can provide is pretty vague. In general,
it isn’t ideal to reach out to the R programming community for help as soon as you encounter
a problem, nor is it typically ideal to spend many hours attempting to solve a coding problem
that could be solved in few minutes if you were to post a well-written question on Stack
Overflow or the RStudio Community (more on these below).

6.2 Where should we seek help?

Where should you turn once you’ve determined that it is time to seek help for your coding
problem? We suggest that you simply start with Google. Very often, a quick Google search
will give you the results you need to help you solve your problem. However, Google search
results won’t always have the answer you are looking for.

If you’ve done a Google search and you still can’t figure out how to solve your coding problem,
we recommend posting a question on one of the following two websites:
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1. Stack Overflow (https://stackoverflow.com/). This is a great website where program-
mers who use many different languages help each other solve programming problems.
This website is free, but you will need to create an account.

2. RStudio Community (https://community.rstudio.com/). Another great discussion-
board-type website from the people who created a lot of the software we will use in this
book. This website is also free, but also requires you to create an account.

�Side Note: Please remember to cross-link your posts if you happen to create them on both
Stack Overflow and RStudio Community. When we say “cross-link” we mean that you should
add a hyperlink to your RStudio Community post on your Stack Overflow post and a link to
your Stack Overflow post on your RStudio Community post.

Next, let’s learn how to make a post.

6.3 How should we seek help?

At this point, you’ve run into a problem, you’ve spent a little time trying to work out a
solution in your head, you’ve searched Google for a solution to the problem, and you’ve still
come up short. So, you decide to ask the R programming community for some help using Stack
Overflow. But, how do you do that?

�Side Note: We’ve decided to show you haw to create a post on Stack Overflow in this section,
but the process for creating a post in the RStudio Community is very similar. Further, an
RStudio Community tutorial is available here: https://community.rstudio.com/t/example-
question-answer-topic-thread/70762.

6.3.1 Creating a post on Stack Overflow

The first thing you need to do is navigate to the Stack Overflow website. The homepage will
look something like the screenshot below.

107

https://stackoverflow.com/


Next, you will click the blue “Ask Question” button. Doing so will take you to a screen like
the following.

As you can see, you need to give your post a title, you need to post the actual question in
the body section of the form, and then you can (and should) tag your post. “A tag is simply
a word or a phrase that describes the topic of the question.”2 For our R-related questions we
will want to use the “r” tag. Other examples of tags you may use often if you continue your
R programming journey may include “dplyr” and “ggplot2”. When you have completed the
form, you simply click the blue “Review your question” button towards the bottom-left corner
of the screen.
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6.3.1.1 Inserting R code

To insert R code into your post (i.e., in the body), you will need to create code blocks. Then,
you will type your R code inside of the code blocks. You can create code blocks using back-ticks
( ‘ ). The back-tick key is the upper-left key of most keyboards – right below the escape key.
On our keyboard, the back-tick and the tilde ( ~ ) share the same key. We will learn more
about code blocks in the chapter on using [Quarto/]. For now, let’s just take a look at an
example of creating a code block in the screenshot below. This screenshot comes from the
example Stack Overflow post introduced at the beginning of the chapter.

As you can see, we placed three back-ticks on their own line before our R code and three
back-ticks on their own line after our R code. Alternatively, we could have used our mouse
to highlight our R code and then clicked the code format button, which is highlighted in the
screenshot above and looks like an empty pair of curly braces ( {} ).

6.3.1.2 Reviewing the post

After you create your post and click the “Review your question” button, you will have an
opportunity to check your post for a couple of potential issues.

1. Duplicates. You want to try your best to make sure your question isn’t a duplicate
question. Meaning, you want to make sure that someone else hasn’t already asked the
same question or a question that is very similar. As you are typing your post title, Stack
Overflow will show you a list of potentially similar questions. It will show you that list
again as you are reviewing your post. You should take a moment to look through that
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list and make sure you question isn’t going to be a duplicate. If it does end up being a
duplicate, Stack Overflow moderators may tag it as such and close it.

2. Typos and errors. Of course, you also want to check your post for standard typos,
grammatical errors, and coding errors. However, you can always edit your post later if
an error does slip through. You just need to click the edit text at the bottom of your
post. A screenshot from the example post is shown in the screenshot below.

6.3.2 Creating better posts and asking better questions

There are no bad R programming questions, but there are definitely ways to ask those questions
that will be better received than others. And better received questions will typically result
in faster responses and more useful answers. It’s important that you ask your questions in a
way that will allow the reader to understand what you are trying to accomplish, what you’ve
already tried, and what results you are getting. Further, unless it’s something extremely
straight forward, you should always provide a little chunk of data that recreates the
problem you are experiencing. These are known as reproducible examples This is
so important that there is an R package that does nothing but help you create reproducible
examples – Reprex.

Additionally, Stack Overflow and the RStudio community both publish guidelines for posting
good questions.

• Stack Overflow guide to asking questions: https://stackoverflow.com/help/how-to-ask

• RStudio Community Tips for writing R-related questions: https://community.rstudio.com/t/faq-
tips-for-writing-r-related-questions/6824

You should definitely pause here an take a few minutes to read through these guidelines. If not
now, come back and read them before you post your first question on either website. Below,
we show you a few example posts and highlight some of the most important characteristics of
quality posts.
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6.3.2.1 Example posts

Here are a few examples of highly viewed posts on Stack Overflow and the RStudio community.
Feel free to look them over. Notice what was good about these posts and what could have been
better. The specifics of these questions are totally irrelevant. Instead, look for the elements
that make posts easy to understand and respond to.

1. Stack Overflow: How to join (merge) data frames (inner, outer, left, right)

2. RStudio Community: Error: Aesthetics must be either length 1 or the same as the data
(2): fill

3. Stack Overflow: How should I deal with “package ‘xxx’ is not available (for R version
x.y.z)” warning?

4. RStudio Community: Could anybody help me! Cannot add ggproto objects together

6.3.2.2 Question title

When creating your posts, you want to make sure they have succinct, yet descriptive, titles.
Stack overflow suggests that you pretend you are talking to a busy colleague and have to
summarize your issue in a single sentence.3 The RStudio Community tips for writing questions
further suggests that you be specific and use keywords.4 Finally, if you are really struggling,
it may be helpful to write your title last.3 In our opinion, the titles from the first 3 examples
above are pretty good. The fourth has some room for improvement.

6.3.2.3 Explanation of the issue

Make sure your posts have a brief, yet clear, explanation of what you are trying to accomplish.
For example, “Sometimes I want to view all rows in a data frame that will be dropped if I drop
all rows that have a missing value for any variable. In this case, I’m specifically interested in
how to do this with dplyr 1.0’s across() function used inside of the filter() verb.”

In addition, you may want to add what you’ve already tried, what result you are
getting, and what result you are expecting. This information can help others better
understand your problem and understand if the solution they offer you does what you are
actually trying to do.

Finally, if you’ve already come across other posts or resources that were similar to the problem
you are having, but not quite similar enough for you to solve your problem, it can be helpful
to provide links to those as well. The author of example 3 above (i.e., How should I deal with
“package ‘xxx’ is not available (for R version x.y.z)” warning?) does a very thorough job of
linking to other posts.
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6.3.2.4 Reproducible example

Make sure your question/post includes a small, reproducible data set that helps
others recreate your problem. This is so important, and so often overlooked by students
in our courses. Notice that we did NOT say to post the actual data you are working on
for your project. Typically, the actual data sets that we work with will have many more
rows and columns than are needed to recreate the problem. All of this extra data just makes
the problem harder to clearly see. And more importantly, the real data we often work with
contains protected health information (PHI) that should NEVER be openly published
on the internet.

Here is an example of a small, reproducible data set that we created for the example Stack
Overflow post introduced at the beginning of the chapter. It only has 5 data rows and 3
columns, but any solution that solves the problem for this small data set will likely solve the
problem in our actual data set as well.

# Load the dplyr package.
library(dplyr)

# Simulate a small, reproducible example of the problem.
df <- tribble(
~id, ~x, ~y,
1, 1, 0,
2, 1, 1,
3, NA, 1,
4, 0, 0,
5, 1, NA

)

Sometimes you can add reproducible data to your post without simulating your own data.
When you download R, it comes with some built in data sets that all other R users have
access to as well. You can see an full list of those data sets by typing the following command
in your R console:

data()

There are two data sets in particular, mtcars and iris, that seemed to be used often in
programming examples and question posts. You can add those data sets to your global envi-
ronment and start experimenting with them using the following code.
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# Add the mtcars data frame your global environment
data(mtcars)

# Add the iris data frame to your global environment
data(iris)

In general, you are safe to post a question on Stack Overflow or the RStudio Community using
either of these data frames in your example code – assuming you are able to recreate the issue
you are trying to solve using these data frames.

6.4 Helping others

Eventually, you may get to a point where you are able to help others with their R coding
issues. In fact, spending a little time each day looking through posts and seeing if you can
provide answers (whether you officially post them or not) is one way to improve your R coding
skills. For some of us, this is even a fun way to pass time! �

In the same way that there ways to improve the quality and usefulness of your question posts,
there are also ways to improve the quality and usefulness of your replies to question posts.
Stack Overflow also provides a guide for writing quality answers, which is available here:
https://stackoverflow.com/help/how-to-answer. In our opinion, the most important part is to
be patient, kind, and respond with a genuine desire to be helpful.

6.5 Summary

In this chapter we discussed when and how to ask for help with R coding problems that will
inevitably occur. In short,

1. Try solving the problem on your own first, but don’t spend an entire day beating your
head against the wall.

2. Start with Google.

3. If you can’t find a solution on Google, create a post on Stack Overflow or the RStudio
Community.

4. Use best practices to create a high quality posts on Stack Overflow or the RStudio
Community. Specifically:

• Write succinct, yet descriptive, titles.
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• Write a a brief, yet clear, explanation of what you are trying to accomplish. Add
what you’ve already tried, what result you are getting, and what result you are
expecting.

• Try to always include a reproducable example of the problem you are encountering
in the form of data.

5. Be patient, kind, and genuine when posting or responding to posts.
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Part II

Coding Tools and Best Practices
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7 R Scripts

Up to this point, we’ve only showed you how to submit your R code to R in the console.
Figure 7.1

Figure 7.1: Submitting R code in the console.

Submitting code directly to the console in this way works well for quick little tasks and snippets
of code. But, writing longer R programs this way has some drawbacks that are probably
already obvious to you. Namely, your code isn’t saved anywhere. And, because it isn’t saved
anywhere, you can’t modify it, use it again later, or share it with others.

Technically, the statements above are not entirely true. When you submit code to the console,
it is copied to RStudio’s History pane and from there you can save, modify, and share with
others (see figure Figure 7.2. But, this method is much less convenient, and provides you with
far fewer whistles and bells than the other methods we’ll discuss in this book.

Those of you who have worked with other statistical programs before may be familiar with
the idea of writing, modifying, saving, and sharing code scripts. SAS calls these code scripts
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Figure 7.2: Console commands copied to the History pane.

“SAS programs”, Stata calls them “DO files”, and SPSS calls them “SPSS syntax files”. If you
haven’t created code scripts before, don’t worry. There really isn’t much to it.

In R, the most basic type of code script is simply called an R script. An R script is just a
plain text file that contains R code and comments. R script files end with the file extension
.R.

Before we dive into giving you any more details about R scripts, we want to say that we’re
actually going to discourage you from using them for most of what we do in this book. Instead,
we’re going to encourage you to use Quarto files for the majority of your interactive coding,
and for preparing your final products for end users. The next chapter is all about Quarto files.
However, we’re starting with R scripts because:

1. They are simpler than Quarto files, so they are a good place to start.

2. Some of what we discuss below will also apply to Quarto files.

3. R scripts are a better choice than Quarto files in some situations (e.g., writing R
packages, creating Shiny apps).

4. Some people just prefer using R scripts.
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Figure 7.3: Example R script.

With all that said, the screenshot below is of an example R script:

Click here to download the R script

As you can see, I’ve called out a couple key elements of the R script to discuss. Figure 7.3

First, instead of just jumping into writing R code, lines 1-5 contain a header that we’ve created
with comments. Because we’ve created it with comments, the R interpreter will ignore it. But,
it will help other people you collaborate with (including future you) figure out what this script
does. Therefore, we suggest that your header includes at least the following elements:

1. A brief description of what the R script does.

2. The author(s) who wrote the R script.

3. Important dates. For example, the date it was originally created and the date it was last
modified. You can usually get these dates from your computer’s operating system, but
they aren’t always accurate.

Second, you may notice that we also used comments to create something we’re calling deco-
rations on lines 1, 5, and 17. Like all comments, they are ignored by the R interpreter. But,
they help create visual separation between distinct sections of your R code, which makes your
code easier for humans to read. We tend to use the equal sign (# ====) for separating major
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sections and the dash (# ----) for separating minor sections; although, “major” and “minor”
are admittedly subjective.

we haven’t explicitly highlighted it in the screenshot above, but it’s probably worth pointing
out the use of line breaks (i.e., returns) in the code as well. This is much easier to read…

# Load packages
library(dplyr)

# Load data
data("mtcars")

# I'm not sure what's in the mtcars data. I'm printing it below to take a look
mtcars

## Data analysis
# ----------------------------------------------------------------------------

# Below, we calculate the average mpg across all cars in the mtcars data frame.
mean(mtcars$mpg)

# Here, we also plot mpg against displacement.
plot(mtcars$mpg, mtcars$disp)

than this…

# Load packages
library(dplyr)
# Load data
data("mtcars")
# I'm not sure what's in the mtcars data. I'm printing it below to take a look
mtcars
## Data analysis
# ----------------------------------------------------------------------------
# Below, we calculate the average mpg across all cars in the mtcars data frame.
mean(mtcars$mpg)
# Here, we also plot mpg against displacement.
plot(mtcars$mpg, mtcars$disp)

Third, it’s considered a best practice to keep each line of code to 80 characters (including
spaces) or less. There’s a little box at the bottom left corner of your R script that will tell
you what row your cursor is currently in and how many characters into that row your cursor
is currently at (starting at 1, not 0).
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Figure 7.4: Cursor location.

For example, 20:3 corresponds to having your cursor between the “e” and the “a” in
mean(mtcars$mpg) in the example script above. Figure 7.4

Fourth, it’s also considered a best practice to load any packages that your R code will use at
the very top of your R script (lines 7 & 8). Figure 7.3 Doing so will make it much easier for
others (including future you) to see what packages your R code needs to work properly right
from the start.

7.1 Creating R scripts

To create your own R scripts, click on the icon shown below Figure 7.5 and you will get a
dropdown box with a list of files you can create. @ref(fig:new-r-script2)

Click the very first option – R Script.

When you do, a new untitled R Script will appear in the source pane.
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Figure 7.5: Click the new source file icon.

Figure 7.6: New source file options.
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Figure 7.7: A blank R script in the source pane.

And that’s pretty much it. Everything else in figure Figure 7.3 is just R code and comments
about the R code. But, you can now easily save, modify, and share this code with others. In
the next chapter, we are going to learn how to write R code in Quarto files, where we can add
a ton of whistles and bells to this simple R script.

122



8 Quarto Files

In the R Scripts chapter, you learned how to create R scripts – plain text files that contain R
code and comments. These R scripts are kind of a big deal because they give us a simple and
effective tool for saving, modifying, and sharing our R code. If it weren’t for the existence of
Quarto files, we would probably do all of the coding in this book using R scripts. However,
Quarto files do exist and they are AWESOME! So, we’re going to suggest that you use them
instead of R scripts the majority of the time.

It’s actually kind of difficult for us to describe what a Quarto file is if you’ve never seen or
heard of one before. Therefore, we’re going to start with an example and work backwards from
there. Figure 8.1 below is a Quarto file. It includes the exact same R code and comments as
the example we saw in Figure 7.3 in the previous chapter.

Figure 8.1: Example Quarto file.

Click here to download the Quarto file
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Notice that the results are embedded directly in the Quarto file immediately below the R code
(e.g., between lines 21 and 22)!

Once rendered, the Quarto file creates the HTML file you see below in Figure 8.2. HTML
files are what websites are made out of, and we’ll walk you through how to create them from
Quarto files later in this chapter.

Figure 8.2: Preview of HTML file created from a Quarto file.

Click here to download the rendered HTML file.

Notice how everything is nicely formatted and easy to read!

When you create Quarto files on your computer, as in Figure 8.3, the rendered HTML file is
saved in the same folder by default.

In Figure 8.3 above, the HTML file is highlighted with a red box and ends with the .html
file extension. The Quarto file is below the HTML file and ends with the .qmd file extension.
Both of these files can be modified, saved, and shared with others.

Warning

HTML documents often require supporting files (e.g., images, CSS style sheets, and
JavaScript scripts) to produce the final formatted output you see in the Figure 8.2. Notice
that we used the embed-resources: true option in our yaml header (yaml headers are
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Figure 8.3: Quarto file and rendered HTML file and on MacOS.

described in more detail below). Including that option makes it possible for us to send a
single HTML file to others with all the supporting files embedded. Please see the Quarto
documentation for more information about HTML document options.

8.1 What is Quarto?

There are literally entire websites and books about Quarto. Therefore, we’re only going to hit
some of the highlights in this chapter. As a starting point, you can think of Quarto files as
being a mix of R scripts, the R console, and a Microsoft Word or Google Doc document. We
say this because:

• The R code that you would otherwise write in R scripts is written in R code chunks
when you use Quarto files. In Figure 8.1 there are R code chunks at lines 10 to 12, 14
to 16, 18 to 21, 27 to 29, and 33 to 35.

• Instead of having to flip back and forth between your source pane and your console
(or viewer) pane in RStudio, the results from your R code are embedded directly in
the Quarto file – directly below the code that generated them. In Figure 8.1 there are
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embedded results between lines 21 and 22, between lines 29 and 30, and between lines
35 and 36 (not fully visible).

• When creating a document in Microsoft Word or Google Docs, you may format text
headings to help organize your document, you may format your text to emphasize certain
words, you may add tables to help organize concepts or data, you may add links to other
resources, and you may add pictures or charts to help you clearly communicate ideas
to yourself or others. Similarly, Quarto files allow you to surround your R code with
formatted text, tables, links, pictures, and charts directly in your document.

Even when we don’t share our Quarto files with anyone else, we find that the added function-
ality described above really helps us organize our data analysis more effectively and helps us
understand what we were doing if we come back to the analysis at some point in the future.

But, Quarto_really_ shines when we do want to share our analysis or results with others. To
get an idea of what we’re talking about, please take a look at the Quarto gallery and view
some of the amazing things you can do with Quarto. As you can see there, Quarto files mix
R code with other kinds of text and media to create documents, websites, presentations, and
more. In fact, the book you are reading right now is created with Quarto files!

8.2 Why use Quarto?

At this point, you may be thinking “Ok, that Quarto gallery has some cool stuff, but it also
looks complicated. Why shouldn’t I just use a basic R script for the little R program I’m
writing?” If that’s what you’re thinking, you have a valid point. Quarto files are slightly more
complicated than basic R scripts. However, after reading the sections below, we think you will
find that getting started with Quarto doesn’t have to be super complicated and the benefits
provided make the initial investment in learning Quarto worth your time.

8.3 Create a Quarto file

RStudio makes it very easy to create your own Quarto file, of which there are several types.
In this chapter, we’re going to show you how to create a Quarto file that can be rendered to
an HTML file and viewed in your web browser.

The process is actually really similar to the process we used to create an R script. Start by
clicking on the icon shown below in Figure 8.4.

As before, we’ll be presented with a dropdown box that lists a bunch of different file types for
us to choose from. This time, we’ll click Quarto Document instead of R script. Figure 8.5

Next, a dialogue box will pop up with some options for us. For now, we will just give our
Quarto document a super creative title – “Text Quarto” – and make sure the default HTML
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Figure 8.4: Click the new file icon.

Figure 8.5: New source file options.
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format is selected. Finally, we will click the Create button in the bottom right-hand corner
of the dialogue box.

Figure 8.6: New Quarto document options.

A new Quarto file will appear in the RStudio source pane after we click the Create button.
This Quarto file includes some example text and code meant to help us get started. We are
typically going to erase all the example stuff and write our own text and code, but Figure 8.7
highlights some key components of Quarto files for now.

First, notice lines 1 through 6 in the example above. These lines make up something called the
YAML header (pronounced yamel). It isn’t important for us to know what YAML means,
but we do need to know that this is one of the defining features of Quarto files. We’ll talk
more about the details of the YAML header soon.

Second, notice lines 16 through 18. These lines make up something called an R code chunk.
Code chunks in Quarto files always start with three backticks ( ‘ ) and a pair of curly braces
({}), and they always end with three more backticks. We know that this code chunk contains
R code because of the “r” inside of the curly braces. We can also create code chunks that will
run other languages (e.g., python), but we won’t do that in this book. You can think of each
R code chunk as a mini R script. We’ll talk more about the details of code chunks soon.

Third, all of the other text is called Markdown. In Figure 8.7 above, the markdown text is
just filler text with some basic instructions for users. In a real project we would use formatted
text like this to add context around our code. For now, you can think of this as being very
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Figure 8.7: The ‘Test Quarto’ file in the RStudio source pane.

similar to the comments we wrote in our R scripts, but markdown allows us to do lots of cool
things that the comments in our R scripts aren’t able to do. For example, line 6 has a link
to a website embedded in it, line 8 includes a heading (i.e., ## Quarto), and line 14 includes
text that is being formatted (the orange text surrounded by two asterisks). In this case, the
text is being bolded.

And that is all we have to do to create a basic Quarto file. Next, we’re going to give you a few
more details about each of the key components of the Quarto file that we briefly introduced
above.

8.4 YAML headers

The YAML header is unlike anything we’ve seen before. The YAML header always begins and
ends with dash-dash-dash (---) typed on its own line (1 & 6 in Figure 8.7). The code written
inside the YAML header generally falls into two categories:

1. Values to be rendered in the Quarto file. For example, in Figure 8.7 we told Quarto to
title our document “Test Quarto”. The title is added to the file by adding the title
keyword, followed by a colon (:), followed by a character string wrapped in quotes.
Examples of other values we could have added include author and date.
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2. Instructions that tell Quarto how to process the file. What do we mean by that? Well,
remember the Quarto gallery you saw earlier? That gallery includes Word documents,
PDF documents, websites, and more. But all of those different document types started
as Quarto file similar to the one in Figure 8.7. Quarto will create a PDF document, a
Word document, or a website from the Quarto file based, in part, on the instructions
we give it inside the YAML header. For example, the YAML header in Figure 8.7 tells
Quarto to create an HTML file from our Quarto file. This output type is selected by
adding the format keyword, followed by a colon (:), followed by the html keyword.
Further, we added the embed-resources: true option to our HTML format. Including
that option makes it possible for us to send a single HTML file to others with all the
supporting files embedded.

What does an HTML file look like? Well, if you hit the Render button in RStudio:

Figure 8.8: RStudio’s render button. Only visible when a Quarto file is open.

R will ask you to save your Quarto file. After you save it, R will automatically create (or
render) a new HTML file and save it in the same location where your Quarto file is saved.
Additionally, a little browser window, like Figure 8.9 will pop up and give you a preview of
what the rendered HTML file looks like.

Notice all the formatting that was applied when R rendered the HTML file. For example, the
title – “Test Quarto” – is in big bold letters at the top of the screen, The headings – Quarto
and Running code – are also written in a large bold font with a faint line underneath them,
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Figure 8.9: An HTML file created using a Quarto file.

the link to the Quarto website is now blue and clickable, and the word “Render” is written in
bold font.

We can imagine that this section may seem a little confusing to some readers right now. If so,
don’t worry. You don’t really need to understand the YAML header at this point. Remember,
when you create a new Quarto file in the manner we described above, the YAML header is
already there. You will probably want to change the title, but that may be the only change
you make for now.

8.5 R code chunks

As we said above, R code chunks always start out with three backticks ( ‘ ) and a pair of curly
braces ({}) with an “r” in them ({r}), and they always end with three more backticks. Typing
that over and over can be tedious, so RStudio provides a keyboard shortcut for inserting R
code chunks into our Quarto files.

On MacOS type option + command + i.

On Windows type control + alt + i

Inside the code chunk, we can type anything that we would otherwise type in the console
or in an R script – including comments. We can then click the little green arrow in the top
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right corner of the code chunk to submit it to R and see the result (see the play button in
Figure 8.7).

Alternatively, we can run the code in the code chunk by typing shift + command + return
on MacOS or shift + control + enter on Windows. If we want to submit a small section
of code in a code chunk, as opposed to all of the code in the code chunk, we can use our
mouse to highlight just the section of code we want to run and type control + return on
MacOS or control + enter on Windows. There are also options to run all code chunks in
the Quarto file, all code chunks above the current code chunk, and all code chunks below the
current chunk. You can access these, and other, run options using the Run button in the top
right-hand corner of the Quarto file in RStudio (see Figure 8.10 below).

Figure 8.10: The run button in RStudio.

8.6 Markdown

Many readers have probably heard of HTML and CSS before. HTML stands for hypertext
markup language and CSS stands for cascading style sheets. Together, HTML and CSS are
used to create and style every website you’ve ever seen. HTML files created from our Quarto
files are no different. They will open in any web browser and behave just like any other
website. Therefore, we can manipulate and style them using HTML and CSS just like any
other website. However, it takes most people a lot of time and effort to learn HTML and CSS.
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So, markdown was created as an easier-to-use alternative. Think of it as HTML and CSS lite.
It can’t fully replace HTML and CSS, but it is much easier to learn, and you can use it to do
many of the main things you might want to do with HTML and CSS. For example, Figure 8.7
and Figure 8.9 we saw that wrapping our text with two asterisks (**) bolds it.

There are a ton of other things we can do with markdown, and we recommend checking out
Quarto’s markdown basics website to learn more. The website covers a lot and may feel
overwhelming at first. So, we suggest just play around with some of the formatting options
and get a feel for what they do. Having said that, it’s totally fine if you don’t try to tackle
learning markdown syntax right now. You don’t really need markdown to follow along with the
rest of the book. However, we still suggest using Quarto files for writing, saving, modifying,
and sharing your R code.

8.6.1 Markdown headings

While we are discussing markdown, we would like to call special attention to markdown head-
ings. We briefly glazed over them above, but we find that beginning R users typically benefit
from a slightly more detailed discussion. Think back to the ## Quarto on line 8 of Figure 8.7.
This markdown created a heading – text that stands out and breaks our document up into
sections. We can create headings by beginning a line in our Quarto document with one or
more hash symbols (#), followed by a space, and then our heading text. Headings can be
nested underneath each other in the same way you might nest topics in a bulleted list. For
example:

• Animals

– Dog
∗ Lab
∗ Yorkie

– Cat

• Plants

– Flowers
– Trees

∗ Oak

Nesting list items this way organizes our list and conveys information that would otherwise
require explicitly writing out more text. For example, that a lab is a type of dog and that
dogs are a type of animal. Thoughtfully nesting our headings in our Quarto files can have
similar benefits. So, how do we nest our headings? Great question! Quarto and RStudio will
automatically nest them based on the number of hash symbols we use (between 1 and 6). In
the example above, ## Quarto it is a second-level heading. We know this because the line
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begins with two hash symbols. Figure 8.11 below shows how we might organize a Quarto file
for a data analysis project into nested sections using markdown headings.

A really important benefit of organizing our Quarto file this way is that it allows us to use
RStudio’s document outline pane to quickly navigate around our Quarto file. In this trivial
example, it isn’t such a big deal. But it can be a huge time saver in a Quarto file with hundreds,
or thousands, of lines of code.

Figure 8.11: A Quarto file with nested headings.

As a final note on markdown headings, we find that new R users sometimes mix up comments
and headings. This is a really understandable mistake to make because both start with the
hash symbol. So, how do you know when typing a hash symbol will create a comment and
when it will create a heading?

• The hash symbol always creates comments in R scripts. R scripts don’t understand
markdown. Therefore, they don’t have markdown headings. R scripts only understand
comments, which begin with a hash symbol, and R code.

• The hash symbol always creates markdown headings in Quarto files when typed outside of
an R code chunk. Remember, everything in between the R code chunks in our Quarto files
is considered markdown by Quarto, and hash symbols create headings in the markdown
language.
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• The hash symbol always creates comments in Quarto files when typed inside of an R
code chunk. Remember, we can think of each R code chunk as a mini R script, and in
R scripts, hash symbols create comments.

8.7 Summary

Quarto files bring together R code, formatted text, and media in a single file. We can use
them to make our lives easier when working on small projects that are just for us, and we can
use them to create large complex documents, websites, and applications that are intended for
much larger audiences. RStudio makes it easy for us to create and render Quarto files into
many different document types, and learning a little bit of markdown can help us format those
documents really nicely. We believe that Quarto files are a great default file type to use for
most projects and we encourage readers to review the Quarto website for more details (and
inspiration)!
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9 R Projects

In previous chapters of this book, we learned how to use R Scripts and Quarto Files to create,
modify, save, and share our R code and results. However, in most real-world projects we will
actually create multiple different R scripts and/or Quarto files. Further, we will often have
other files (e.g., images or data) that we want to store alongside our R code files. Over time,
keeping up with all of these files can become cumbersome. R projects are a great tool for
helping us organize and manage collections of files. Another really important advantage to
organizing our files into R projects is that they allow us to use relative file paths instead of
absolute file paths, which we will discuss in detail later.

RStudio makes creating R projects really simple. For starters, let’s take a look at the top right
corner of our RStudio application window. Currently, we see an R project icon that looks like
little blue 3-dimensional box with an “R” in the middle. To the right of the R project icon, we
see words Project: (None). RStudio is telling us that our current session is not associated
with an R project.
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To create a new R project, we just need to click the drop-down arrow next to the words
Project: (None) to open the projects menu. Then, we will click the New Project... op-
tion.

Doing so will open the new project wizard. For now, we will select the New Directory option.
We will discuss the other options later in the book.
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Next, we will click the New Project option.

In the next window, we will have to make some choices and enter some information. The fist
thing we will have to do is name our project. We do so by entering a value in the Directory
name: box. Often, we can name our R project directory to match the name of the larger project
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we are working on in a pretty natural way. If not, the name we choose for our project directory
should essentially follow the same guidelines that we use for object (variable) names, which
we will learn about soon. In this example, we went with the very creative my_first_project
project name.�

When we create our R project in a moment, RStudio will create a folder on our computer
where we can keep all of the files we need for our project. That folder will be named using
the name we entered in the Directory name: box in the previous step. So, the next thing
we need to do is tell R where on our computer to put the folder. We do so by clicking the
Browse... button and selecting a location. For this example, we chose to create the project
on our computer’s desktop.

Finally, we just click the Create Project button near the bottom-right corner of the New
Project Wizard.

Doing so will create our new R project in the location we selected in the Create project as
subdirectory of: text box in the new project wizard. In the screenshot below, we can see
that a folder was created on our computer’s desktop called my_first_project. Additionally,
there is one file inside of that folder named my_first_project that ends with the file extension
.Rproj (see red arrow 2 in the figure below).
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This file is called an R project file. Every time we create an R project, RStudio will create
an R project file and add it to our project directory (i.e., the folder) for us. This file helps
RStudio track and organize our R project.

To easiest way to open the R project we just created is to double click the R project file –
my_first_project.Rproj. Doing so will open a new RStudio session along with all of the R
code files we had open last time we were working on our R project. Because this is our first
time opening our example R project, we won’t see any R code files.

Alternatively, we can open our R project by once again clicking the R project icon in the upper
right corner of an open RStudio session and then clicking the Open Project... option. This
will open a file selection window where we can select our R project directory and open it.
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Finally, we will know that RStudio understands that we are working in the context of
our project because the words Project: (None) that we previously saw in the top right
corner of the RStudio window will be replaced with the project name. In this case,
my_first_project.
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Now that we’ve created our R project, there’s nothing special we need to do to add other files
to it. We only need save files and folders for our project as we typically would. We just need
to make sure that we save them in our project directory (i.e., the folder). RStudio will take
care of the rest.

R projects are a great tool for organizing our R code and other complimentary files. Should we
use them every single time we use R? Probably not. So, when should we use them? Well, the
best – albeit somewhat unhelpful – answer is probably to use them whenever they are useful.
However, at this point in your R journey you may not have enough experience to know when
they will be useful and when they won’t. Therefore, we are going to suggest that create an R
project for your project if (1) your project will have more than one file and/or (2) more than
one person will be working on the R code in your project. As we alluded to earlier, organizing
our files into R projects allows us to use relative file paths instead of absolute file paths,
which will make it much easier for us to collaborate with others. File paths will be discussed
in detail later.
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10 Coding Best Practices

At this point in the book, we’ve talked a little bit about what R is. We’ve also talked about
the RStudio IDE and took a quick tour around its four main panes. Finally, we wrote our
first little R program, which simulated and analyzed some data about a hypothetical class.
Writing and executing this R program officially made you an R programmer. �

However, you should know that not all R code is equally “good” – even when it’s equally valid.
What do we mean by that? Well, we already discussed the R interpreter and R syntax in the
chapter on speaking R’s language. Any code that uses R syntax that the R interpreter can
understand is valid R code. But, is the R interpreter the only one reading your R code? No
way! In epidemiology, we collaborate with others all the time! That collaboration is going to
be much more efficient and enjoyable when there is good communication – including R code
that is easy to read and understand. Further, you will often need to read and/or reuse code
you wrote weeks, months, or years after you wrote it. You may be amazed at how quickly
you forget what you did and/or why you did it that way. Therefore, in addition to writing
valid R code, this chapter is about writing “good” R code – code that easily and efficiently
communicates ideas to humans.

Of course, “good code” is inevitably somewhat subjective. Reasonable people can have a
difference of opinion about the best way to write code that is easy to read and understand.
Additionally, reasonable people can have a difference of opinion about when code is “good
enough.” For these reasons, we’re going to offer several “suggestions” about writing good R
code below, but only two general principles, which we believe most R programmers would
agree with.

10.1 General principles

1. Comment your code. Whether you intend to share your code with other people or
not, make sure to write lots of comments about what you are trying to accomplish in
each section of your code and why.

2. Use a style consistently. We’re going to suggest several guidelines for styling your R
code below, but you may find that you prefer to style your R code in a different way.
Whether you adopt our suggested style or not, please find or create a style that works
for you and your collaborators and use it consistently.
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10.2 Code comments

There isn’t a lot of specific advice that we can give here because comments are so idiosyncratic
to the task at hand. So, we think the best we can do at this point is to offer a few examples
for you to think about.

10.2.1 Defining key variables

As we will discuss below, variables should have names that are concise, yet informative. How-
ever, the data you receive in the real world will not always include informative variable names.
Even when someone has given the variables informative names, there may still be contextual
information about the variables that is important to understand for data management and
analysis. Some data sets will come with something called a codebook or data dictionary.
These are text files that contain information about the data set that are intended to provide
you with some of that more detailed information. For example, the survey questions that
were used to capture the values in each variable or what category each value in a categorical
variable represents. However, real data sets don’t always come with a data dictionary, and
even when they do, it can be convenient to have some of that contextual information close at
hand, right next to your code. Therefore, we will sometimes comment our code with informa-
tion about variables that are important for the analysis at hand. Here is an example from an
administrative data set we ww using for an analysis:

* **Case number definition**

- Case / investigation number.

* **Intake stage definition**

- An ID number assigned to the Intake. Each Intake (Report) has its
own number. A case may have more than one intake. For example, case # 12345
has two intakes associated with it, 9 days apart, each with their own ID
number. Each of the two intakes associated with this case have multiple
allegations.

* **Intake start definition**

- An intake is the submission or receipt of a report - a phone call or
web-based. The Intake Start Date refers to the date the staff member
opens a new record to begin recording the report.
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10.2.2 What this code is trying to accomplish

Sometimes, it is obvious what a section of code literally does. but not so obvious why you’re
doing it. We often try to write some comments around our code about what it’s trying to
ultimately accomplish and why. For example:

## Standardize character strings

# Because we will merge this data with other data sets in the future based on
# character strings (e.g., name), we need to go ahead and standardize their
# formats here. This will prevent mismatches during the merges. Specifically,
# we:

# 1. Transform all characters to lower case
# 2. Remove any special characters (e.g., hyphens, periods)
# 3. Remove trailing spaces (e.g., "John Smith ")
# 4. Remove double spaces (e.g., "John Smith")

vars <- quos(full_name, first_name, middle_name, last_name, county, address, city)

client_data <- client_data %>%
mutate_at(vars(!!! vars), tolower) %>%
mutate_at(vars(!!! vars), stringr::str_replace_all, "[^a-zA-Z\\d\\s]", " ") %>%
mutate_at(vars(!!! vars), stringr::str_replace, "[[:blank:]]$", "") %>%
mutate_at(vars(!!! vars), stringr::str_replace_all, "[[:blank:]]{2,}", " ")

rm(vars)

10.2.3 Why we chose this particular strategy

In addition to writing comments about why we did something, we sometimes write comments
about why we did it instead of something else. Doing this can save you from having to relearn
lessons you’ve already learned through trial and error but forgot. For example:

### Create exact match dummy variables

* We reshape the data from long to wide to create these variables because it significantly decreases computation time compared to doing this as a group_by operation on the long data.

10.3 Style guidelines

UsInG c_o_n_s_i_s_t_e_n_t STYLE i.s. import-ant!
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Good coding style is like using correct punctuation. You can manage without it,
but it sure makes things easier to read. As with styles of punctuation, there are
many possible variations… Good style is important because while your code only
has one author, it’ll usually have multiple readers. This is especially true when
you’re writing code with others. In that case, it’s a good idea to agree on a common
style up-front. Since no style is strictly better than another, working with others
may mean that you’ll need to sacrifice some preferred aspects of your style.5

Below, we outline the style that we and our collaborators typically use when writing R code
for a research project. It generally follows the Tidyverse style guide, which we strongly suggest
you read. Outside of our class, you don’t have to use our style, but you really should find or
create a style that works for you and your collaborators and use it consistently.

10.3.1 Comments

Please put a space in between the pound/hash sign and the rest of your text when writing
comments. For example, # here is my comment instead of #here is my comment. It just
makes the comment easier to read.

10.3.2 Object (variable) names

In addition to the object naming guidance given in the Tidyverse style guide, We suggest the
following object naming conventions.

10.3.3 Use names that are informative

Using names that are informative and easy to remember will make life easier for everyone who
uses your data – including you!

# Uninformative names - Don't do this
x1
var1

# Informative names
employed
married
education
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10.3.3.1 Use names that are concise

You want names to be informative, but you don’t want them to be overly verbose. Really long
names create more work for you and more opportunities for typos. In fact, we recommend
using a single word when you can.

# Write out entire name of the study the data comes from - Don't do this
womens_health_initiative

# Write out an acronym for the study the data comes from - assuming everyone
# will be familiar with this acronym - Do this
whi

10.3.3.2 Use all lowercase letters

Remember, R is case-sensitive, which means that myStudyData and mystudydata are different
things to R. Capitalizing letters in your file name just creates additional details to remember
and potentially mess up. Just keep it simple and stick with lowercase letters.

# All upper case - so aggressive - Don't use
MYSTUDYDATA

# Camel case - Don't use
myStudyData

# All lowercase - Use
my_study_data

10.3.3.3 Separate multiple words with underscores.

Sometimes you really just need to use multiple words to name your object. In those cases, we
suggested separating words with an underscore.

# Multiple words running together - Hard to read - Don't use
mycancerdata

# Camel case - easier to read, but more to remember and mess up - Don't use
myCancerData

# Separate with periods - easier to read, but doesn't translate well to many
# other languages. For example, SAS won't accept variable names with
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# periods - Don't use
my.cancer.data

# Separate with underscores - Use
my_cancer_data

10.3.3.4 Prefix the names of similar variables

When you have multiple related variables, it’s good practice to start their variable names with
the same word. It makes these related variables easier to find and work with in the future if we
need to do something with all of them at once. We can sort our variable names alphabetically
to easily find find them. Additionally, we can use variable selectors like starts_with("name")
to perform some operation on all of them at once.

# Don't use
first_name
last_name
middle_name

# Use
name_first
name_last
name_middle

# Don't use
street
city
state

# Use
address_street
address_city
address_state

10.3.4 File Names

All the variable naming suggestons above also apply to file names. However, we make a few
additional suggestions specific to file names below.
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10.3.4.1 Managing multiple files in projects

When you are doing data management and analysis for real-world projects you will typically
need to break the code up into multiple files. If you don’t, the code often becomes really
difficult to read and manage. Having said that, finding the code you are looking for when
there are 10, 20, or more separate files isn’t much fun either. Therefore, we suggest the
following (or similar) file naming conventions be used in your projects.

• Separate data cleaning and data analysis into separate files (typically, .R or .Rmd).

– Data cleaning files should be prefixed with the word “data” and named as follows
∗ data_[order number]_[purpose]

# Examples
data_01_import.Rmd
data_02_clean.Rmd
data_03_process_for_regression.Rmd

• Analysis files that do not directly create a table or figure should be prefixed with the
word “analysis” and named as follows

– analysis_[order number]_[brief summary of content]

# Examples
analysis_01_exploratory.Rmd
analysis_02_regression.Rmd

• Analysis files that DO directly create a table or figure should be prefixed with the word
“table” or “fig” respectively and named as follows

– table_[brief summary of content] or

– fig_[brief summary of content]

# Examples
table_network_characteristics.Rmd
fig_reporting_patterns.Rmd

Note

�Side Note: We sometimes do data manipulation (create variables, subset data, reshape
data) in an analysis file if that analysis (or table or chart) is the only analysis that uses
the modified data. Otherwise, we do the modifications in a separate data cleaning file.
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• Images

– Should typically be exported as png (especially when they are intended for use
HTML files).

– Should typically be saved in a separate “img” folder under the project home
directory.

– Should be given a descriptive name.
∗ Example: histogram_heights.png, NOT fig_02.png.

– We have found that the following image sizes typically work pretty well for our
projects.

∗ 1920 x 1080 for HTML

∗ 770 x 360 for Word

• Word and PDF output files

– We typically save them in a separate “docs” folder under the project home directory.
– Whenever possible, we try to set the Word or PDF file name to match the name of

the R file that it was created in.
∗ Example: first_quarter_report.Rmd creates docs/first_quarter_report.pdf

• Exported data files (i.e., RDS, RData, CSV, Excel, etc.)

– We typically save them in a separate “data” folder under the project home directory.
– Whenever possible, we try to set the Word or PDF file name to match the name of

the R file that it was created in.
∗ Example: data_03_texas_only.Rmd creates data/data_03_texas_only.csv
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11 Using Pipes

11.1 What are pipes?

� What are pipes? This |> is the pipe operator. As of version 4.1, the pipe operator is part
of base R. Prior to version 4.1, the pipe operator was only available from the magrittr. The
pipe imported from the magrittr package looked like %>% and you may still come across it in
R code – including in this book.

� What does the pipe operator do? In our opinion, the pipe operator makes your R code much
easier to read and understand.

� How does it do that? It makes your R code easier to read and understand by allowing you
to view your nested functions in the order you want them to execute, as opposed to viewing
them literally nested inside of each other.

You were first introduced to nesting functions in the Let’s get programming chapter. Recall
that functions return values, and the R language allows us to directly pass those returned
values into other functions for further calculations. We referred to this as nesting functions
and said it was a big deal because it allows us to do very complex operations in a scalable way,
without storing a bunch of unneeded intermediate objects in our global environment.

In that chapter, we also discussed a potential downside of nesting functions. Namely, our R
code can become really difficult to read when we start nesting lots of functions inside one
another.

Pipes allow us to retain the benefits of nesting functions without making our code really
difficult to read. At this point, we think it’s best to show you an example. In the code below
we want to generate a sequence of numbers, then we want to calculate the log of each of the
numbers, and then find the mean of the logged values.

# Performing an operation using a series of steps.
my_numbers <- seq(from = 2, to = 100, by = 2)
my_numbers_logged <- log(my_numbers)
mean_my_numbers_logged <- mean(my_numbers_logged)
mean_my_numbers_logged

[1] 3.662703
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� Here’s what we did above:

• We created a vector of numbers called my_numbers using the seq() function.

• Then we used the log() function to create a new vector of numbers called
my_numbers_logged, which contains the log values of the numbers in my_numbers.

• Then we used the mean() function to create a new vector called mean_my_numbers_logged,
which contains the mean of the log values in my_numbers_logged.

• Finally, we printed the value of mean_my_numbers_logged to the screen to view.

The obvious first question here is, “why would I ever want to do that?” Good question! You
probably won’t ever want to do what we just did in the code chunk above, but we haven’t
learned many functions for working with real data yet and we don’t want to distract you with
a bunch of new functions right now. Instead, we want to demonstrate what pipes do. So,
we’re stuck with this silly example.

� What’s nice about the code above? We would argue that it is pretty easy to read because
each line does one thing and it follows a series of steps in logical order. First, create the
numbers. Second, log the numbers. Third, get the mean of the logged numbers.

� What could be better about the code above? All we really wanted was the mean value
of the logged numbers (i.e., mean_my_numbers_logged); however, on our way to getting
mean_my_numbers_logged we also created two other objects that we don’t care about –
my_numbers and my_numbers_logged. It took us time to do the extra typing required to
create those objects, and those objects are now cluttering up our global environment. It may
not seem like that big of a deal here, but in a real data analysis project these things can really
add up.

Next, let’s try nesting these functions instead:

# Performing an operation using nested functions.
mean_my_numbers_logged <- mean(log(seq(from = 2, to = 100, by = 2)))
mean_my_numbers_logged

[1] 3.662703

�Here’s what we did above:

• We created a vector of numbers called mean_my_numbers_logged by nesting the seq()
function inside of the log() function and nesting the log() function inside of the mean()
function.

• Then, we printed the value of mean_my_numbers_logged to the screen to view.
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� What’s nice about the code above? It is certainly more efficient than the sequential step
method we used at first. We went from using 4 lines of code to using 2 lines of code, and we
didn’t generate any unneeded objects.

� What could be better about the code above? Many people would say that this code is harder
to read than than the the sequential step method we used at first. This is primarily due to
the fact that each line no longer does one thing, and the code no longer follows a sequence
of steps from start to finish. For example, the final operation we want to do is calculate the
mean, but the mean() function is the first function we see when we read the code.

Finally, let’s try see what this code looks like when we use pipes:

# Performing an operation using pipes.
mean_my_numbers_logged <- seq(from = 2, to = 100, by = 2) |>
log() |>
mean()

mean_my_numbers_logged

[1] 3.662703

�Here’s what we did above:

• We created a vector of numbers called mean_my_numbers_logged by passing the result of
the seq() function directly to the log() function using the pipe operator, and passing
the result of the the log() function directly to the mean() function using the pipe
operator.

• Then, we printed the value of mean_my_numbers_logged to the screen to view.

� As you can see, by using pipes we were able to retain the benefits of performing the operation
in a series of steps (i.e., each line of code does one thing and they follow in sequential order)
and the benefits of nesting functions (i.e., more efficient code).

The utility of the pipe operator may not be immediately apparent to you based on this very
simple example. So, next we’re going to show you a little snippet of code from one of our
research projects. In the code chunk that follows, the operation we’re trying to perform on the
data is written in two different ways – without pipes and with pipes. It’s very unlikely that
you will know what this code does, but that isn’t really the point. Just try to get a sense of
which version is easier for you to read.

# Nest functions without pipes
responses <- select(ungroup(filter(group_by(filter(merged_data, !is.na(incident_number)), incident_number), row_number() == 1)), date_entered, detect_data, validation)

# Nest functions with pipes
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responses <- merged_data |>
filter(!is.na(incident_number)) |>
group_by(incident_number) |>
filter(row_number() == 1) |>
ungroup() |>
select(date_entered, detect_data, validation)

What do you think? Even without knowing what this code does, do you feel like one version
is easier to read than the other?

11.2 How do pipes work?

Perhaps we’ve convinced you that pipes are generally useful. But, it may not be totally obvious
to you how to use them. They are actually really simple. Start by thinking about pipes as
having a left side and a right side.

Figure 11.1: Pipes have a left side and a right side.

The thing on the right side of the pipe operator should always be a function.

The thing on the left side of the pipe operator can be a function or an object.
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Figure 11.2: A function should always be to the right of the pipe operator.

Figure 11.3: A function or an object can be to the left of the pipe operator.
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All the pipe operator does is take the thing on the left side and pass it to the first argument
of the function on the right side.

Figure 11.4: Pipe the left side to the first argument of the function on the right side.

It’s a really simple concept, but it can also cause people a lot of confusion at first. So, let’s
take look at a couple more concrete examples.

Below we pass a vector of numbers to the to the mean() function, which returns the mean
value of those numbers to us.

mean(c(2, 4, 6, 8))

[1] 5

We can also use a pipe to pass that vector of numbers to the mean() function.

c(2, 4, 6, 8) |> mean()

[1] 5
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So, the R interpreter took the thing on the left side of the pipe operator, stuck it into the
first argument of the function on the right side of the pipe operator, and then executed the
function. In this case, the mean() function doesn’t require any other arguments, so we don’t
have to write anything else inside of the mean() function’s parentheses. When we see c(2, 4,
6, 8) |> mean(), R sees mean(c(2, 4, 6, 8))

Here’s one more example. Pretty soon we will learn how to use the filter() function from
the dplyr package to keep only a subset of rows from our data frame. Let’s start by simulating
some data:

# Simulate some data
height_and_weight <- tibble(
id = c("001", "002", "003", "004", "005"),
sex = c("Male", "Male", "Female", "Female", "Male"),
ht_in = c(71, 69, 64, 65, 73),
wt_lbs = c(190, 176, 130, 154, 173)

)

height_and_weight

# A tibble: 5 x 4
id sex ht_in wt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154
5 005 Male 73 173

In order to work, the filter() function requires us to pass two values to it. The first value
is the name of the data frame object with the rows we want to subset. The second is the
condition used to subset the rows. Let’s say that we want to do a subgroup analysis using
only the females in our data frame. We could use the filter() function like so:

# First value = data frame name (height_and_weight)
# Second value = condition for keeping rows (when the value of sex is Female)
filter(height_and_weight, sex == "Female")

# A tibble: 2 x 4
id sex ht_in wt_lbs
<chr> <chr> <dbl> <dbl>

1 003 Female 64 130
2 004 Female 65 154
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�Here’s what we did above:

• We kept only the rows from the data frame called height_and_weight that had a value
of Female for the variable called sex using dplyr’s filter() function.

We can also use a pipe to pass the height_and_weight data frame to the filter() function.

# First value = data frame name (height_and_weight)
# Second value = condition for keeping rows (when the value of sex is Female)
height_and_weight |> filter(sex == "Female")

# A tibble: 2 x 4
id sex ht_in wt_lbs
<chr> <chr> <dbl> <dbl>

1 003 Female 64 130
2 004 Female 65 154

As you can see, we get the exact same result. So, the R interpreter took the thing on the left
side of the pipe operator, stuck it into the first argument of the function on the right side of
the pipe operator, and then executed the function. In this case, the filter() function needs
a value supplied to two arguments in order to work. So, we wrote sex == "Female" inside of
the filter() function’s parentheses. When we see height_and_weight |> filter(sex ==
"Female"), R sees filter(height_and_weight, sex == "Female").

Note

�Side Note: This pattern – a data frame piped into a function, which is usually then
piped into one or more additional functions is something that you will see over and over
in this book.

Don’t worry too much about how the filter() function works. That isn’t the point here.
The two main takeaways so far are:

1. Pipes make your code easier to read once you get used to them.

2. The R interpreter knows how to automatically take whatever is on the left side of the
pipe operator and make it the value that gets passed to the first argument of the function
on the right side of the pipe operator.
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11.2.1 Keyboard shortcut

Typing |> over and over can be tedious! Thankfully, RStudio provides a keyboard shortcut
for inserting the pipe operator into your R code.

On Mac type shift + command + m.

On Windows type shift + control + m

It may not seem totally intuitive at first, but this shortcut is really handy once you get used
to it.

11.2.2 Pipe style

As with all the code we write, style is an important consideration. We generally agree with
the recommendations given in the Tidyverse style guide. In particular:

1. We tend to use pipes in such a way that each line of code does one, and only one, thing.

2. If a line of code contains a pipe operator, the pipe operator should generally be the last
thing typed on the line.

3. The pipe operator should always have a space in front of it.

4. If the pipe operator isn’t the last thing typed on the line, then it should be have a space
after it too.

5. “If the function you’re piping into has named arguments (like mutate() or summarize()),
put each argument on a new line. If the function doesn’t have named arguments (like
select() or filter()), keep everything on one line unless it doesn’t fit, in which case
you should put each argument on its own line.”6

6. “After the first step of the pipeline, indent each line by two spaces. RStudio will auto-
matically put the spaces in for you after a line break following a |> . If you’re putting
each argument on its own line, indent by an extra two spaces. Make sure ) is on its own
line, and un-indented to match the horizontal position of the function name.”6

Each of these recommendations are demonstrated in the code below.

# Do this...
female_height_and_weight <- height_and_weight |> # Line 1
filter(sex == "Female") |> # Line 2
summarise( # Line 3

mean_ht = mean(ht_in), # Line 4
sd_ht = sd(ht_in) # Line 5

) |> # Line 6
print() # Line 7
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# A tibble: 1 x 2
mean_ht sd_ht

<dbl> <dbl>
1 64.5 0.707

In the code above, we would first like you to notice that each line of code does one, and
only one, thing. Line 1 only assigns the result of the code pipeline to a new object –
female_height_and_weight, line 2 only keeps the rows in the data frame we want – rows
for females, line 3 only opens the summarise() function, line 4 only calculates the mean of the
ht_in column, line 5 only calculates the standard deviation of the ht_in column, line 6 only
closes the summarise() function, and line 7 only prints the result to the screen.

Second, we’d like you to notice that each line containing a pipe operator (i.e., lines 1, 2, and
6) ends with the pipe operator, and the pipe operators all have a space in front of them.

Third, we’d like you to notice that each named argument in the summarise() function is
written on its own line (i.e., lines 4 and 5).

Finally, we’d like you notice that each step of the pipeline is indented two spaces (i.e., lines
2, 3, 6, and 7), lines 4 and 5 are indented an additional two spaces because they contain
named arguments to the summarise() function, and that the summarise() function’s closing
parenthesis is on its own line (i.e., line 6), horizontally aligned with the “s” in “summarise(”.

Now compare that with the code in the code chunk below.

# Avoid this...
female_height_and_weight <- height_and_weight |> filter(sex == "Female") |>
summarise(mean_ht = mean(ht_in), sd_ht = sd(ht_in)) |> print()

# A tibble: 1 x 2
mean_ht sd_ht

<dbl> <dbl>
1 64.5 0.707

Although we get the same result as before, most people would agree that the code is harder
to quickly glance at and read. Further, most people would also agree that it would be more
difficult to add or rearrange steps when the code is written that way. As previously stated,
there is a certain amount of subjectivity in what constitutes “good” style. But, we will once
again reiterate that it is important to adopt some style and use it consistently. If you are a
beginning R programmer, why not adopt the tried-and-true styles suggested here and adjust
later if you have a compelling reason to do so?
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11.3 Final thought on pipes

We think it’s important to note that not everyone in the R programming community is a fan
of using pipes. We hope that we’ve made a compelling case for why we use pipes, but we
acknowledge that it is ultimately a preference, and that using pipes is not the best choice in
all circumstances. Whether or not you choose to use the pipe operator is up to you; however,
we will be using them extensively throughout the remainder of this book.
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Part III

Data Transfer
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12 Introduction to Data Transfer

In previous chapters, we learned how to write our own simple R programs by directly creating
data frames in RStudio with the data.frame() function, the tibble() function, and the
tribble() function. We consider this to be a really fundamental skill to master because it
allows us to simulate data and it allows us to get data into R regardless of what format that
data is stored in (assuming we can “see” the stored data). In other words, if nothing else, we
can always resort to creating data frames this way.

In practice, however, this is not how people generally exchange data. You might recall that
in Section 2.2.1 Transferring data We briefly mentioned the need to get data into R that
others have stored in various different file types. These file types are also sometimes referred
to as file formats. Common examples encountered in epidemiology include database files,
spreadsheets, text files, SAS data sets, and Stata data sets.

Further, the data frames we’ve created so far don’t currently live in our global environment
from one programming session to the next. We haven’t yet learned how to efficiently store our
data long-term. We think the limitations of having to manually create a data frame every time
we start a new programming session are probably becoming obvious to you at this point.
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In this part of the book, we will learn to import data stored in various different file types
into R for data management and analysis, we will learn to store R data frames in a more
permanent way so that we can come back later to modify or analyze them, and we will learn
to export data so that we may efficiently share it with others.
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13 File Paths

In this part of the book, we will need to work with file paths. File paths are nothing more
than directions that tell R where to find, or place, data on our computer. In our experience,
however, some students are a little bit confused about file paths at first. So, in this chapter
we will briefly introduce what file paths are and how to find the path to a specific file on our
computer.

Let’s say that we want you to go to the store and buy a loaf of bread.

When we say, “go to the store”, this is really a shorthand way of telling you a much more
detailed set of directions.
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Not only do you need to do all of the steps in the directions above, but you also need to use
the exact sequence above in order to arrive at the desired destination.

File paths aren’t so different. If we want R to “go get” the file called my_study_data.csv, we
have to give it directions to where that file is located. But the file’s location is not a geographic
location that involves making left and right turns. Rather, it is a location in your computer’s
file system that involves moving deeper into folders that are nested inside one another.
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For example, let’s say that we have a folder on our desktop called “NTRHD” for “North Texas
Regional Health Department.

And, my_study_data.csv is inside the NTRHD folder.
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We can give R directions to that data using the following path:

/Users/bradcannell/Desktop/NTRHD/my_study_data.csv (On Mac)

OR

C:/Users/bradcannell/Desktop/NTRHD/my_study_data.csv (On Windows)

Warning

Mac and Linux use forward slashes in file paths (/) by default. Windows uses backslashes
(\) in file paths by default. However, no matter which operating system we are using, we
should still use forward slashes in the file paths we pass to import and export functions in
RStudio. In other words, use forward slashes even if you are using Windows.

These directions may be read in a more human-like way by replacing the slashes with “and
then”. For example, /Users/bradcannell/Desktop/NTRHD/my_study_data.csv can be read
as “starting at the computer’s home directory, go into files that are accessible to the username
bradcannell, and then go into the folder called Desktop, and then go into the folder called
NTRHD, and then get the file called my_study_data.csv.”
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Warning

You will need to change bradcannell to your username, unless your username also
happens to be bradcannell

Warning

Notice that we typed .csv at the end immediately after the name of our file
my_study_data. The .csv we typed is called a file extension. File extensions tell
the computer the file’s type and what programs can use it. In general, we MUST use the
full file name and extension when importing and exporting data in R.

Self Quiz:

Let’s say that we move my_study_data.csv to a different folder on our desktop called
research. What file path would we need to give R to tell it how to find the data?

/Users/bradcannell/Desktop/research/my_study_data.csv (On Mac)

OR

C:/Users/bradcannell/Desktop/research/my_study_data.csv (On Windows)

Now let’s say that we created a new folder inside of the research folder on our desktop called
my studies. Now what file path would we need to give R to tell it how to find the data?

/Users/bradcannell/Desktop/research/my studies/my_study_data.csv (On Mac)

OR

C:/Users/bradcannell/Desktop/research/my studies/my_study_data.csv (On Win-
dows)

13.1 Finding file paths

Now that we know how file paths are constructed, we can always type them manually. However,
typing file paths manually is tedious and error prone. Luckily, both Windows and MacOS have
shortcuts that allow us to easily copy and paste file paths into R.

On a Mac, we right-click on the file we want the path for and a drop-down menu will appear.
Then, click the Get Info menu option.
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Now, we just copy the file path in the Where section of the get info window and paste it into
our R code.

Alternatively, as shown below, we can right click on the file we want the path for to open
the same drop-down menu shown above. But, if we hold down the alt/option key the Copy
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menu option changes to Copy ... as Pathname. We can then left-click that option to copy
the path and paste it into our R code.

A similar method exists in Windows as well. First, we hold down the shift key and right click
on the file we want the path for. Then, we click Copy as path in the drop-down menu that
appears and paste the file path into our R code.

13.2 Relative file paths

All of the file paths we’ve seen so far in this chapter are absolute file paths (as opposed
to relative file paths). In this case, absolute just means that the file path begins with the
computer’s home directory. Remember, that the home directory in the examples above was
/Users/bradcannell. When we are collaborating with other people, or sometimes even when
we use more than one computer to work on our projects by ourselves, this can problematic.
Pause here for a moment and think about why that might be…

Using absolute file paths can be problematic because the home directory can be different on
every computer we use and is almost certainly different on one of our collaborator’s computers.
Let’s take a look at an example. In the screenshot below, we are importing an Excel spreadsheet
called form_20.xlsx into R as an R data frame named df. Don’t worry about the import
code itself. We will learn more about importing Microsoft Excel spreadsheets soon. For now,
just look at the file path we are passing to the read_excel() function. By doing so, we are
telling R where to go find the Excel file that we want to import. In this case, are we giving R
an absolute or relative file path?
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We are giving R an absolute file path. We know this because it starts with the home directory
– /Users/bradcannell. Does our code work?

Yes! Our code does work. We can tell because there are no errors on the screen and the df
object we created looks as we expect it to when we print it to the screen. Great!!

Now, let’s say that our research assistant – Arthur Epi – is going to help us analyze this data
as well. So, we share this code file with him. What do you think will happen when he runs
the code on his computer?
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When Arthur tries to import this file on his computer using our code, he gets an error.
The error tells him that the path /Users/bradcannell/Dropbox/02 Teaching/R4Epi
Textbook/my_first_project/data/form_20.xlsx doesn’t exist. And on Arthur’s computer
it doesn’t! The file form_20.xlsx exists, but not at the location /Users/bradcannell/Dropbox/02
Teaching/R4Epi Textbook/my_first_project/data/. This is because Arthur’s home direc-
tory is /Users/arthurepi not /Users/bradcannell. The directions are totally different!

To make this point clearer, let’s return to our directions to the store example from earlier in
the chapter. In that example, we only gave one list of directions to the store.
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Notice that these directions assume that we are starting from our house. As long as we leave
from our house, they work great! But what happens if we are at someone else’s house and
we ask you to go to the store and buy a loaf of bread? You’d walk out the front door and
immediately discover that the directions don’t make any sense! You’d think, “Camp Bowie
Blvd.? Where is that? I don’t see that street anywhere!”

Did the store disappear? No, of course not! The store is still there. It’s just that our directions
to the store assume that we are starting from our house. If these directions were a file path,
they would be an absolute file path. They start all the way from our home and only work from
our home.

So, could Arthur just change the absolute file path to work on his computer? Sure! He could
do that, but then the file path wouldn’t work on Brad’s computer anymore. So, could there
just be two code chunks in the file – one for Brad’s computer and one for Arthur’s computer?
Sure! We could do that, but then one code chunk or the other will always throw an error on
someone’s computer. That will mean that we won’t ever be able to just run our R code in its
entirety. We’ll have to run it chunk-by-chunk to make sure we skip the chunk that throws an
error. And this problem would just be multiplied if we are working with 5, 10, or 15 other
collaborators instead of just 1. So, is there a better solution?

Yes! A better solution is to use a relative file path. Returning to our directions to the store
example, it would be like giving directions to the store from a common starting point that
everyone knows.
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Notice that the directions are now from a common location, which isn’t somebody’s “home”.
Instead, it’s the corner of Camp Bowie Blvd. and Hulen St. You could even say that the
directions are now relative to a common starting place. Now, we can give these directions to
anyone and they can use them as long as they can find the corner of Camp Bowie and Hulen!
Relative file paths work in much the same way. We tell RStudio to anchor itself at a common
location that exists on everyone’s computer and then all the directions are relative to that
location. But, how can we do that? What location do all of our collaborators have on all of
their computers?

The answer is our R project’s directory (i.e., folder)! In order to effectively use relative file
paths in R, we start by creating an R project. If you don’t remember how to create R projects,
this would be a good time to go back and review the R projects chapter.

In the screenshot below, we can see that our RStudio session is open in the context of our R
project called my_first_project.
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In that context, R starts looking for files in our R project folder – no matter where we put the
R project folder on our computer.

For example, in the next screenshot, we can see that the R project folder we previously
created) (arrow 1), which is called my_first_project, is located on a computer’s desktop.
One way we can tell that it’s an R project is because it contains an R project file (arrow
2). We can also see that our R project now contains a folder, which contains an Excel file
called form_20.xlsx (arrow 3). Finally, we can see that we we’ve added a new Quarto/ file
called test_relative_links.Rmd (arrow 4). That file contains the code we wrote to import
form_20.xlsx as an R data frame.
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Because we are using an R project, we can tell R where to find form_20.xlsx using a relative
file path. That is, we can give R directions that begin at the R project’s directory. Remember,
that just means the folder containing the R project file. In this case, my_first_project.
Pause here for a minute. With that starting point in mind, how would you tell R to find
form_20.xlsx?

Well, you would say, “go into the folder called data, and then get the file called form_20.xlsx.”
Written as a file path, what would that look like?

It would look like data/form_20.xlsx. Let’s give it a try!
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It works! We can tell because there are no errors on the screen and the df object we created
looks as we expect it to when we print it to the screen.

Now, let’s try it on Arthur’s computer and see what happens.
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As you can see, the absolute path still doesn’t work on Arthur’s computer, but the relative
path does! It may not be obvious to you now, but this makes collaborating so much easier!

Let’s quickly recap what we needed to do to be able to use relative file paths.

1. We need to create an R project.

2. We needed to save our R code and our data inside of the R project directory.

3. We needed to share the R project folder with our collaborators. This part wasn’t shown,
but it was implied. We could have shared our R project by email. We could have shared
our R project by using a shared cloud-based file storage service like Dropbox, Google
Drive, or OneDrive. Better yet, we could have shared our R project using a GitHub
repository, which we will discuss later in the book.

4. We replaced all absolute file paths in our code with relative file paths. In general, we
should always use relative file paths if at all possible. It makes our code easier to read
and maintain, and it makes life so much easier for us when we collaborate with others!

Now that we know what file paths are and how to find them, let’s use them to import and
export data to and from R.
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14 Importing Plain Text Files

We previously learned how to manually create a data frame in RStudio with the data.frame()
function, the tibble() function, or the tribble() function. This will get the job done, but
it’s not always very practical – particularly when you have larger data sets.

Additionally, others will usually share data with you that is already stored in a file of some
sort. For our purposes, any file containing data that is not an R data frame is referred to as
raw data. In my experience, raw data is most commonly shared as CSV (comma separated
values) files or as Microsoft Excel files. CSV files will end with the .csv file extension and
Excel files end with the .xls or .xlsx file extensions. But remember, generally speaking R can
only manipulate and analyze data that has been imported into R’s global environment. In
this lesson, you will learn how to take data stored in several different common types of files
import them into R for use.

There are many different file types that one can use to store data. In this book, we will divide
those file types into two categories: plain text files and binary files. Plain text files are simple
files that you (a human) can directly read using only your operating system’s plain text editor
(i.e., Notepad on Windows or TextEdit on Mac). These files usually end with the .txt file
extension – one exception being the .csv extension. Specifically, in this chapter we will learn
to import the following variations of plain text files:

• Plain text files with data delimited by a single space.

• Plain text files with data delimited by tabs.

• Plain text files stored in a fixed width format.

• Plain text files with data delimited by commas - csv files.

Later, we will discuss importing binary files. For now, you can think of binary files as more
complex file types that can’t generally be read by humans without the use of special software.
Some examples include Microsoft Excel spreadsheets, SAS data sets, and Stata data sets.
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14.1 Packages for importing data

Base R contains several functions that can be used to import plain text files; however, I’m
going to use the readr package to import data in the examples that follow. Compared to base
R functions for importing plain text files, readr:

• Is roughly 10 times faster.

• Doesn’t convert character variables to factors by default.

• Behaves more consistently across operating systems and geographic locations.

If you would like to follow along, I suggest that you go ahead and install and load readr
now.

library(readr)

14.2 Importing space delimited files

We will start by importing data with values are separated by a single space. Not necessarily
because this is the most common format you will encounter; in my experience it is not. But
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it’s about as simple as it gets, and other types of data are often considered special cases of
files separated with a single space. So, it seems like a good place to start.

Tip

�Side Note: In programming lingo, it is common to use the word delimited inter-
changeably with the word separated. For example, you might say “values separated by
a single space” or you might say “a file with space delimited values.”

For our first example we will import a text file with values separated by a single space. The
contents of the file are the now familiar height and weight data.

You may click here to download this file to your computer.

single_space <- read_delim(
file = "single_delimited.txt",
delim = " "

)

Rows: 4 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: " "
chr (3): id, sex, ht_in
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dbl (1): wgt_lbs

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

single_space

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <chr> <dbl>

1 001 Male 71 190
2 002 Male . 176
3 003 Female 64 130
4 004 Female 65 154

�Here’s what we did above:

• We used readr’s read_delim() function to import a data set with values that are
delimited by a single space. Those values were imported as a data frame, and we assigned
that data frame to the R object called single_space.

• You can type ?read_delim into your R console to view the help documentation for this
function and follow along with the explanation below.

• The first argument to the read_delim() function is the file argument. The value
passed to the file argument should be a file path that tells R where to find the data set
on your computer.

• The second argument to the read_delim() function is the delim argument. The value
passed to the delim argument tells R what character separates each value in the data
set. In this case, a single space separates the values. Note that we had to wrap the single
space in quotation marks.

• The readr package imported the data and printed a message giving us some informa-
tion about how it interpreted column names and column types. In programming lingo,
deciding how to interpret the data that is being imported is called parsing the data.

– By default, readr will assume that the first row of data contains variable names
and will try to use them as column names in the data frame it creates. In this case,
that was a good assumption. We want the columns to be named id, sex, ht_in,
and wgt_lbs. Later, we will learn how to override this default behavior.
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– By default, readr will try to guess what type of data (e.g., numbers, character
strings, dates, etc.) each column contains. It will guess based on analyzing the
contents of the first 1,000 rows of the data. In this case, readr’s guess was not
entirely correct (or at least not what we wanted). readr correctly guessed that the
variables id and sex should be character variables, but incorrectly guessed that
ht_in should be a character variable as well. Below, we will learn how to fix this
issue.

Warning

Make sure to always include the file extension in your file paths. For example, using
“/single_delimited” instead of “/single_delimited.txt” above (i.e., no .txt) would have
resulted in an error telling you that the filed does not exist.

14.2.1 Specifying missing data values

In the previous example, readr guessed that the variable ht_in was a character variable. Take
another look at the data and see if you can figure out why?

Did you see the period in the third value of the third row? The period is there because
this value is missing, and a period is commonly used to represent missing data. However,
R represents missing data with the special NA value – not a period. So, the period is just a
regular character value to R. When R reads the values in the ht_in column, it decides that it
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can easily turn the numbers into character values, but it doesn’t know how to turn the period
into a number. So, the column is parsed as a character vector.

But as we said, this is not what we want. So, how do we fix it? Well, in this case, we will
simply need to tell R that missing values are represented with a period in the data we are
importing. We do that by passing that information to the na argument of the read_delim()
function:

single_space <- read_delim(
file = "single_delimited.txt",
delim = " ",
na = "."

)

Rows: 4 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: " "
chr (2): id, sex
dbl (2): ht_in, wgt_lbs

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

single_space

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male NA 176
3 003 Female 64 130
4 004 Female 65 154

�Here’s what we did above:

• By default, the value passed to the na argument of the read_delim() function is c("",
"NA"). This means that R looks for nothing (i.e., a value should be there but isn’t - this
really doesn’t make sense when the delimiter is a single space) or an NA.

• We told R to look for a period to represent missing data instead of a nothing or an NA
by passing the period character to the na argument.
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• It’s important to note that changing the value of the na argument does not change the
way R represents missing data in the data frame that is created. It only tells R how to
identify missing values in the raw data that we are importing. In the R data frame that
is created, missing data will still be represented with the special NA value.

14.3 Importing tab delimited files

Sometimes you will encounter plain text files that contain values separated by tab characters
instead of a single space. Files like these may be called tab separated value or tsv files, or
they may be called tab-delimited files.

To import tab separated value files in R, we use a variation of the same program we just saw.
We just need to tell R that now the values in the data will be delimited by tabs instead of a
single space.

You may click here to download this file to your computer.

tab <- read_delim(
file = "tab.txt",
delim = "\t"

)
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Rows: 4 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: "\t"
chr (2): id, sex
dbl (2): ht_in, wgt_lbs

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

tab

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

�Here’s what we did above:

• We used readr’s read_delim() function to import a data set with values that are
delimited by tabs. Those values were imported as a data frame, and we assigned that
data frame to the R object called tab.

• To tell R that the values are now separated by tabs, we changed the value we passed to
the delim argument to "\t". This is a special symbol that means “tab” to R.

I don’t personally receive tab separated values files very often. But, apparently, they are
common enough to warrant a shortcut function in the readr package. That is, instead of using
the read_delim() function with the value of the delim argument set to "\t", we can simply
pass our file path to the read_tsv() function. Under the hood, the read_tsv() function does
exactly the same thing as the read_delim() function with the value of the delim argument
set to "\t".

tab <- read_tsv("tab.txt")

Rows: 4 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: "\t"
chr (2): id, sex
dbl (2): ht_in, wgt_lbs
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i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

tab

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

14.4 Importing fixed width format files

Yet another type of plain text file we will discuss is called a fixed width format or fwf file.
Again, these files aren’t super common in my experience, but they can be sort of tricky when
you do encounter them. Take a look at this example:

As you can see, a hallmark of fixed width format files is inconsistent spacing between values.
For example, there is only one single space between the values 004 and Female in the fourth
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row. But, there are multiple spaces between the values 65 and 154. Therefore, we can’t tell
R to look for a single space or tab to separate values. So, how do we tell R which characters
(including spaces) go with which variable? Well, if you look closely you will notice that all
variable values start in the same column. If you are wondering what I mean, try to imagine a
number line along the top of the data:

This number line creates a sequence of columns across your data, with each column being 1
character wide. Notice that spaces are also considered a character with width just like any
other. We can use these columns to tell R exactly which columns contain the values for each
variable.

You may click here to download this file to your computer.

Now, in this case we can just use readr’s read_table() function to import this data:

fixed <- read_table("fixed_width.txt")

-- Column specification --------------------------------------------------------
cols(
id = col_character(),
sex = col_character(),
ht_in = col_double(),
wgt_lbs = col_double()

)
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Warning: 1 parsing failure.
row col expected actual file
1 -- 4 columns 5 columns 'fixed_width.txt'

fixed

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

�Here’s what we did above:

• We used readr’s read_table() function to import data from a fixed width format file.
Those values were imported as a data frame, and we assigned that data frame to the R
object called fixed.

• You can type ?read_table into your R console to view the help documentation for this
function and follow along with the explanation below.

• By default, the read_table() function looks for values to be separated by one or more
columns of space.

However, how could you import this data if there weren’t always spaces in between data values.
For example:
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In this case, the read_table() function does not give us the result we want.

fixed <- read_table("fixed_width_no_space.txt")

-- Column specification --------------------------------------------------------
cols(
id = col_character(),
sex = col_double(),
ht_inwgt_lbs = col_double()

)

Warning: 3 parsing failures.
row col expected actual file
1 -- 3 columns 4 columns 'fixed_width_no_space.txt'
3 -- 3 columns 2 columns 'fixed_width_no_space.txt'
4 -- 3 columns 2 columns 'fixed_width_no_space.txt'

fixed

# A tibble: 4 x 3
id sex ht_inwgt_lbs
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<chr> <dbl> <dbl>
1 001Male 71 190
2 002Male 69 176
3 003Female64 130 NA
4 004Female65 154 NA

Instead, it parses the entire data set as a single character column. It does this because it
can’t tell where the values for one variable stop and the values for the next variable start.
However, because all the variables start in the same column, we can tell R how to parse the
data correctly. We can actually do this in a couple different ways:

You may click here to download this file to your computer.

14.4.1 Vector of column widths

One way to import this data is to tell R how many columns wide each variable is in the raw
data. We do that like so:

fixed <- read_fwf(
file = "fixed_width_no_space.txt",
col_positions = fwf_widths(

widths = c(3, 6, 5, 3),
col_names = c("id", "sex", "ht_in", "wgt_lbs")

),
skip = 1

)

Rows: 4 Columns: 4
-- Column specification --------------------------------------------------------

chr (2): id, sex
dbl (2): ht_in, wgt_lbs

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

fixed

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>
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1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

�Here’s what we did above:

• We used readr’s read_fwf() function to import data from a fixed width format file.
Those values were imported as a data frame, and we assigned that data frame to the R
object called fixed.

• You can type ?read_fwf into your R console to view the help documentation for this
function and follow along with the explanation below.

• The first argument to the read_fwf() function is the file argument. The value passed
to the file argument should be file path that tells R where to find the data set on your
computer.

• The second argument to the read_fwf() function is the the col_positions argument.
The value passed to this argument tells R the width (i.e., number of columns) that
belong to each variable in the raw data set. This information is actually passed to the
col_positions argument directly from the fwf_widths() function. This is an example
of nesting functions.

– The first argument to the fwf_widths() function is the widths argument. The
value passed to the widths argument should be a numeric vector of column widths.
The column width of each variable should be calculated as the number of columns
that contain the values for that variable. For example, take another look at the
data with the imaginary number line:
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All of the values for the variable id can be located within the first 3 columns of data. All of
the values for the variable sex can be located within the next 6 columns of data. All of the
values for the variable ht_in can be located within the next 5 columns of data. And, all of the
values for the variable wgt_lbs can be located within the next 3 columns of data. Therefore,
we pass the vector c(3, 6, 5, 3) to the widths argument.

The second argument to the fwf_widths() function is the col_names argument. The value
passed to the col_names argument should be a character vector of column names.

• The third argument of the read_fwf() function that we passed a value to is the skip
argument. The value passed to the skip argument tells R how many rows to ignore
before looking for data values in the raw data. In this case, we passed a value of one,
which told R to ignore the first row of the raw data. We did this because the first row
of the raw data contained variable names instead of data values, and we already gave R
variable names in the col_names argument to the fwf_widths() function.

14.4.2 Paired vector of start and end positions

Another way to import this data is to tell R how which columns each variable starts and stops
at in the raw data. We do that like so:

fixed <- read_fwf(
file = "fixed_width_no_space.txt",
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col_positions = fwf_positions(
start = c(1, 4, 10, 15),
end = c(3, 9, 11, 17),
col_names = c("id", "sex", "ht_in", "wgt_lbs")

),
skip = 1

)

Rows: 4 Columns: 4
-- Column specification --------------------------------------------------------

chr (2): id, sex
dbl (2): ht_in, wgt_lbs

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

fixed

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

�Here’s what we did above:

• This time, we passed column positions to the col_positions argument of read_fwf()
directly from the fwf_positions() function.

– The first argument to the fwf_positions() function is the start argument. The
value passed to the start argument should be a numeric vector containing the first
column that contains a value for each variable. For example, take another look at
the data with the imaginary number line:
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The first column that contains part of the value for the variable id can be located in column
1 of data. The first column that contains part of the value for the variable sex can be located
in column 4 of data. The first column that contains part of the value for the variable ht_in
can be located in column 10 of data. And, the first column that contains part of the value for
the variable wgt_lbs can be located in column 15 of data. Therefore, we pass the vector c(1,
4, 10, 15) to the start argument.

The second argument to the fwf_positions() function is the end argument. The value passed
to the end argument should be a numeric vector containing the last column that contains a
value for each variable. The last column that contains part of the value for the variable id can
be located in column 3 of data. The last column that contains part of the value for the variable
sex can be located in column 9 of data. The last column that contains part of the value for
the variable ht_in can be located in column 11 of data. And, the last column that contains
part of the value for the variable wgt_lbs can be located in column 17 of data. Therefore, we
pass the vector c(3, 9, 11, 17) to the end argument.

The third argument to the fwf_positions() function is the col_names argument. The value
passed to the col_names argument should be a character vector of column names.

14.4.3 Using named arguments

As a shortcut, either of the methods above can be written using named vectors. All this means
is that we basically combine the widths and col_names arguments to pass a vector of column
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widths, or we combine the start, end, and col_names arguments to pass a vector of start and
end positions. For example:

Column widths:

read_fwf(
file = "fixed_width_no_space.txt",
col_positions = fwf_cols(

id = 3,
sex = 6,
ht_in = 5,
wgt_lbs = 3

),
skip = 1

)

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

Column positions:

read_fwf(
file = "fixed_width_no_space.txt",
col_positions = fwf_cols(

id = c(1, 3),
sex = c(4, 9),
ht_in = c(10, 11),
wgt_lbs = c(15, 17)

),
skip = 1

)

Rows: 4 Columns: 4
-- Column specification --------------------------------------------------------

chr (2): id, sex
dbl (2): ht_in, wgt_lbs
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i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

14.5 Importing comma separated values files

The final type of plain text file that we will discuss is by far the most common type used in my
experience. I’m talking about the comma separated values or csv file. Unlike space and
tab separated values files, csv file names end with the .csv file extension. Although, csv files
are plain text files that can be opened in plain text editors such as Notepad for Windows or
TextEdit for Mac, many people view csv files in spreadsheet applications like Microsoft Excel,
Numbers for Mac, or Google Sheets.

Figure 14.1: A csv file viewed in a plain text editor.
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Figure 14.2: A csv file viewed in Microsoft Excel.

Importing standard csv files into R with the readr package is easy and uses a syntax that is
very similar to read_delim() and read_tsv(). In fact, in many cases we only have to pass
the path to the csv file to the read_csv() function like so:

You may click here to download this file to your computer.

csv <- read_csv("comma.csv")

Rows: 4 Columns: 4
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (1): sex
dbl (3): id, ht_in, wt_lbs

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

csv

# A tibble: 4 x 4
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id sex ht_in wt_lbs
<dbl> <chr> <dbl> <dbl>

1 1 Male 71 190
2 2 Male 69 176
3 3 Female 64 130
4 4 Female 65 154

�Here’s what we did above:

• We used readr’s read_csv() function to import a data set with values that are delimited
by commas. Those values were imported as a data frame, and we assigned that data
frame to the R object called csv.

• You can type ?read_csv into your R console to view the help documentation for this
function and follow along with the explanation below.

• Like read_tsv(), R is basically executing the read_delim() function with the value of
the delim argument set to "," under the hood. You could also use the read_delim()
function with the value of the delim argument set to "," if you wanted to.

14.6 Additional arguments

For the most part, the data we imported in all of the examples above was relatively well
behaved. What I mean by that is that the data basically “looked” like each of the read_
functions were expecting it to “look”. Therefore, we didn’t have to adjust many of the various
read_ functions’ default values. The exception was changing the default value of the na
argument to the read_delim() function. However, all of the read_ functions above have
additional arguments that you may need to tweak on occasion. The two that I tend to adjust
most often are the col_names and col_types arguments. It’s impossible for me to think of
every scenario where you may need to do this, but I’ll walk through a basic example below,
which should be sufficient for you to get the idea.

Take a look at this csv file for a few seconds. It started as the same exact height and weight
data we’ve been using, but I made a few changes. See if you can spot them all.
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When people record data in Microsoft Excel, they do all kinds of crazy things. In the screenshot
above, I’ve included just a few examples of things I see all the time. For example:

• Row one contains generic variable names that don’t really serve much of a purpose.

• Row two is a blank line. I’m not sure why it’s there. Maybe the study staff finds it
aesthetically pleasing?

• Row three contains some variable descriptions. These are actually useful, but they aren’t
currently formatted in a way that makes for good variable names.

• Row 7, column D is a missing value. However, someone wrote the word “Missing” instead
of leaving the cell blank.

• Column E also contains some notes for the data collection staff that aren’t really part
of the data.

All of the issues listed above are things we will have to deal with before we can analyze our
data. Now, in this small data set we could just fix these issues directly in Microsoft Excel and
then import the altered data into R with a simple call to read_csv() without adjusting any
options. However, that this is generally a really bad idea.
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Warning

• I suggest that you don’t EVER alter your raw data. All kinds of crazy things
happen with data and data files. If you keep your raw data untouched and in a safe
place, worst case scenario you can always come back to it and start over. If you
start messing with the raw data, then you may lose the ability to recover what it
looked like in its original form forever. If you import the data into R before altering
it then your raw data stays preserved

• If you are going to make alterations in Excel prior to importing the data, I strongly
suggest making a copy of the raw data first. Then, alter the copy before importing
into R. But, even this can be a bad idea.

• If you make alterations to the data in Excel then there is generally no record of those
alterations. For example, let’s say you click in a cell and delete a value (maybe even
by accident), and then send me the csv file. I will have no way of knowing that a
value was deleted. When you alter the data directly in Excel (or any program that
doesn’t require writing code), it can be really difficult for others (including future
you) to know what was done to the data. You may be able manually compare the
altered data to the original data if you have access to both, but who wants to do
that – especially if the file is large? However, if you import the data into R as-is
and programmatically make alterations with R code, then your R code will, by
definition, serve a record of all alterations that were made.

• Often data is updated. You could spend a significant amount of time altering
your data in Excel only to be sent an updated file next week. Often, the manual
alterations you made in one Excel file are not transferable to another. However,
if all alterations are made in R, then you can often just run the exact same code
again on the updated data.

So, let’s walk through addressing these issues together. We’ll start by taking a look at our
results with all of read_csv’s arguments left at their default values.

You may click here to download this file to your computer.

csv <- read_csv("comma_complex.csv")

New names:
Rows: 6 Columns: 5
-- Column specification
-------------------------------------------------------- Delimiter: "," chr
(5): Var1...1, Var1...2, Var3, Var4, Notes
i Use `spec()` to retrieve the full column specification for this data. i
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Specify the column types or set `show_col_types = FALSE` to quiet this message.
* `Var1` -> `Var1...1`
* `Var1` -> `Var1...2`

csv

# A tibble: 6 x 5
Var1...1 Var1...2 Var3 Var4 Notes
<chr> <chr> <chr> <chr> <chr>

1 <NA> <NA> <NA> <NA> <NA>
2 Study ID Participant Sex Paticipant Height (in) Participant Weight (lbs) <NA>
3 1 Male 71 190 <NA>
4 2 Male <NA> 176 <NA>
5 3 Female 64 130 <NA>
6 4 Female 65 Missing Call~

That is obviously not what we wanted. So, let’s start adjusting some of read_csv()’s defaults
– staring with the column names.

csv <- read_csv(
file = "comma_complex.csv",
col_names = c("id", "sex", "ht_in", "wgt_lbs")

)

Rows: 7 Columns: 5
-- Column specification --------------------------------------------------------
Delimiter: ","
chr (5): id, sex, ht_in, wgt_lbs, X5

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

# A tibble: 7 x 5
id sex ht_in wgt_lbs X5
<chr> <chr> <chr> <chr> <chr>

1 Var1 Var1 Var3 Var4 Notes
2 <NA> <NA> <NA> <NA> <NA>
3 Study ID Participant Sex Paticipant Height (in) Participant Weight (lbs) <NA>
4 1 Male 71 190 <NA>
5 2 Male <NA> 176 <NA>
6 3 Female 64 130 <NA>
7 4 Female 65 Missing Call~
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�Here’s what we did above:

• We passed a character vector of variable names to the col_names argument. Doing so
told R to use the words in the character vector as column names instead of the values
in the first row of the raw data (the default).

• Because the character vector of names only contained 4 values, the last column was
dropped from the data. R gives us a warning message to let us know. Specially, for each
row it says that it was expecting 4 columns (because we gave it 4 column names), but
actually found 5 columns. We’ll get rid of this message next.

csv <- read_csv(
file = "comma_complex.csv",
col_names = c("id", "sex", "ht_in", "wgt_lbs"),
col_types = cols(

col_character(),
col_character(),
col_integer(),
col_integer(),
col_skip()

)
)

Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:
dat <- vroom(...)
problems(dat)

csv

# A tibble: 7 x 4
id sex ht_in wgt_lbs
<chr> <chr> <int> <int>

1 Var1 Var1 NA NA
2 <NA> <NA> NA NA
3 Study ID Participant Sex NA NA
4 1 Male 71 190
5 2 Male NA 176
6 3 Female 64 130
7 4 Female 65 NA

�Here’s what we did above:
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• We told R explicitly what type of values we wanted each column to contain. We did
so by nesting a col_ function for each column type inside the col() function, which is
passed directly to the col-types argument.

• You can type ?readr::cols into your R console to view the help documentation for this
function and follow along with the explanation below.

• Notice various column types (e.g., col_character()) are functions, and that they are
nested inside of the cols() function. Because they are functions, you must include the
parentheses. That’s just how the readr package is designed.

• Notice that the last column type we passed to the col_types argument was col_skip().
This tells R to ignore the 5th column in the raw data (5th because it’s the 5th column
type we listed). Doing this will get rid of the warning we saw earlier.

• You can type ?readr::cols into your R console to see all available column types.

• Because we told R explicitly what type of values we wanted each column to contain,
R had to drop any values that couldn’t be coerced to the type we requested. More
specifically, they were coerced to missing (NA). For example, the value Var3 that was
previously in the first row of the ht_in column. It was coerced to NA because R does
not know (nor do I) how to turn the character string “Var3” into an integer. R gives us
a warning message about this.

Next, let’s go ahead and tell R to ignore the first three rows of the csv file. They don’t contain
anything that is of use to us at this point.

csv <- read_csv(
file = "comma_complex.csv",
col_names = c("id", "sex", "ht_in", "wgt_lbs"),
col_types = cols(

col_character(),
col_character(),
col_integer(),
col_integer(),
col_skip()

),
skip = 3

)

Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:
dat <- vroom(...)
problems(dat)
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csv

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <int> <int>

1 1 Male 71 190
2 2 Male NA 176
3 3 Female 64 130
4 4 Female 65 NA

�Here’s what we did above:

• We told R to ignore the first three rows of the csv file by passing the value 3 to the skip
argument.

• The remaining warning above is R telling us that it still had to convert the word “Missing”
to an NA in the 4th row of the wgt_lbs column because it didn’t know how to turn the
word “Missing” into an integer. This is actually exactly what we wanted to happen, but
we can get rid of the warning by explicitly adding the word “Missing” to the list of values
R looks for in the na argument.

csv <- read_csv(
file = "comma_complex.csv",
col_names = c("id", "sex", "ht_in", "wgt_lbs"),
col_types = cols(

col_character(),
col_character(),
col_integer(),
col_integer(),
col_skip()

),
skip = 3,
na = c("", "NA", "Missing")

)

csv

# A tibble: 4 x 4
id sex ht_in wgt_lbs
<chr> <chr> <int> <int>

1 1 Male 71 190
2 2 Male NA 176
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3 3 Female 64 130
4 4 Female 65 NA

Wow! This was kind of a long chapter! � But, you should now have the foundation you need
to start importing data in R instead of creating data frames manually. At least as it pertains
to data that is stored in plain text files. Next, we will learn how to import data that is stored
in binary files. Most of the concepts we learned in this chapter will apply, but we will get to
use a couple new packages �.
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15 Importing Binary Files

In the last chapter we learned that there are many different file types that one can use to store
data. We also learned how to use the readr package to import several different variations of
plain text files into R.

In this chapter, we will focus on data stored in binary files. Again, you can think of binary
files as being more complex than plain text files and accessing the information in binary files
requires the use of special software. Some examples of binary files that we have frequently
seen used in epidemiology include Microsoft Excel spreadsheets, SAS data sets, and Stata data
sets. Below, we will learn how to import all three file types into R.

15.1 Packages for importing data

Technically, base R does not contain any functions that can be used to import the binary file
types discussed above. However, the foreign package contains functions that may be used to
import SAS data sets and Stata data sets, and is installed by default when you install R on
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your computer. Having said that, we aren’t going to use the foreign package in this chapter.
Instead, we’re going to use the following packages to import data in the examples below. If
you haven’t done so already, we suggest that you go ahead and install these packages now.

• readxl. We will use the readxl package to import Microsoft Excel files.

• haven. We will use the haven package to import SAS and Stata data sets.

library(readxl)
library(haven)

15.2 Importing Microsoft Excel spreadsheets

We probably sent data in Microsoft Excel files more than any other file format. Fortunately,
the readxl package makes it really easy to import Excel spreadsheets into R. And, because
that package is maintained by the same people who create the readr package that you have
already seen, we think it’s likely that the readxl package will feel somewhat familiar right
from the start.

We would be surprised if any of you had never seen an Excel spreadsheet before – they are
pretty ubiquitous in the modern world – but we’ll go ahead and show a screenshot of our
height and weight data in Excel for the sake of completeness.
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All we have to do to import this spreadsheet into R as a data frame is passing the path to the
excel file to the path argument of the read_excel() function.

You may click here to download this file to your computer.

excel <- read_excel("excel.xlsx")

excel

# A tibble: 4 x 4
ID sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

�Here’s what we did above:

• We used readxl’s read_excel() function to import a Microsoft Excel spreadsheet. That
spreadsheet was imported as a data frame and we assigned that data frame to the R
object called excel.

Warning

Make sure to always include the file extension in your file paths. For example, using
“/excel” instead of “/excel.xlsx” above (i.e., no .xlsx) would have resulted in an error
telling you that the filed does not exist.

Fortunately for us, just passing the Excel file to the read_excel() function like this will
usually “just work.” But, let’s go ahead and simulate another situation that is slightly more
complex. Once again, we’ve received data from a team that is using Microsoft Excel to capture
some study data.
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As you can see, this data looks very similar to the csv file we previously imported. However,
it looks like the study team has done a little more formatting this time. Additionally, they’ve
added a couple of columns we haven’t seen before – date of birth and annual household
income.

As a final little wrinkle, the data for this study is actually the second sheet in this Excel file
(also called a workbook). The study team used the first sheet in the workbook as a data
dictionary that looks like this:
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Once again, we will have to deal with some of the formatting that was done in Excel before
we can analyze our data in R.

You may click here to download this file to your computer.

We’ll start by taking a look at the result we get when we try to pass this file to the
read_excel() function without changing any of read_excel()’s default values.

excel <- read_excel("excel_complex.xlsx")

New names:
* `` -> `...2`
* `` -> `...3`

excel

# A tibble: 8 x 3
`Height and Weight Study\r\nData Dictionary` ...2 ...3
<chr> <chr> <chr>

1 <NA> <NA> <NA>
2 Variable Definition Type
3 Study ID Randomly assigned particip~ Cont~
4 Assigned Sex at Birth Sex the participant was as~ Dich~
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5 Height (inches) Participant's height in in~ Cont~
6 Weight (lbs) Participant's weight in po~ Cont~
7 Date of Birth Participant's date of birth Date
8 Annual Household Income Participant's annual house~ Cont~

And, as we’re sure you saw coming, this isn’t the result we wanted. However, we can get
the result we wanted by making a few tweaks to the default values of the sheet, col_names,
col_types, skip, and na arguments of the read_excel() function.

excel <- read_excel(
path = "excel_complex.xlsx",
sheet = "Study Phase 1",
col_names = c("id", "sex", "ht_in", "wgt_lbs", "dob", "income"),
col_types = c(

"text",
"text",
"numeric",
"numeric",
"date",
"numeric",
"skip"

),
skip = 3,
na = c("", "NA", "Missing")

)

excel

# A tibble: 4 x 6
id sex ht_in wgt_lbs dob income
<chr> <chr> <dbl> <dbl> <dttm> <dbl>

1 001 Male 71 190 1981-05-20 00:00:00 46000
2 002 Male NA 176 1990-08-16 00:00:00 67000
3 003 Female 64 130 1980-02-21 00:00:00 49000
4 004 Female 65 NA 1983-04-12 00:00:00 89000

As we said, the readr package and readxl package were developed by the same people. So,
the code above looks similar to the code we used to import the csv file in the previous chapter.
Therefore, we’re not going to walk through this code step-by-step. Rather, we’re just going to
highlight some of the slight differences.
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• You can type ?read_excel into your R console to view the help documentation for this
function and follow along with the explanation below.

• The first argument to the read_excel() function is the path argument. It serves the
same purpose as the file argument to read_csv() – it just has a different name.

• The sheet argument to the read_excel() function tells R which sheet of the Excel
workbook contains the data you want to import. In this case, the study team named
that sheet “Study Phase 1”. We could have also passed the value 2 to the sheet argument
because “Study Phase 1” is the second sheet in the workbook. However, we suggest using
the sheet name. That way, if the study team sends you a new Excel file next week with
different ordering, you are less likely to accidentally import the wrong data.

• The value we pass to the col_types argument is now a vector of character strings instead
of a list of functions nested in the col() function.

– The values that the col_types function will accept are "skip" for telling R to
ignore a column in the spreadsheet, "guess" for telling R to guess the variable type,
"logical" for logical (TRUE/FALSE) variables, “numeric” for numeric variables,
"date" for date variables, "text" for character variables, and "list" for everything
else.

– Notice that we told R to import income as a numeric variable. This caused the com-
mas and dollar signs to be dropped. We did this because keeping the commas and
dollar signs would have required us to make income a character variable (numeric
variables can only include numbers). If we had imported income as a character
variable, we would have lost the ability to perform mathematical operations on it.
Remember, it makes no sense to “add” two words together. Later, we will show
you how to add dollar signs and commas back to the numeric values if you want to
display them in your final results.

• We used the col_names, skip, and na arguments in exactly the same way we used them
in the read_csv function.

You should be able to import most of the data stored in Excel spreadsheets with just the few
options that we discussed above. However, there may be times were importing spreadsheets
is even more complicated. If you find yourself in that position, we suggest that you first check
out the readxl website here.

15.3 Importing data from other statistical analysis software

Many applications designed for statistical analysis allow you to save data in a binary format.
One reason for this is that binary data formats allow you to save metadata alongside your
data values. Metadata is data about the data. Using our running example, the data is about
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the heights, weights, and other characteristics of our study participants. Metadata about
this data might include information like when this data set was created, or value labels that
make the data easier to read (e.g., the dollar signs in the income variable).

In our experience, you are slightly more likely to have problems importing binary files saved
from other statistical analysis applications than plain text files. Perhaps because they are
more complex, the data just seems to become corrupt and do other weird things more often
than is the case with plain text files. However, in our experience, it is also the case that when
we are able to import binary files created in other statistical analysis applications, doing so
requires less adjusting of default values. In fact, we will usually only need to pass the file path
to the correct read_ function.

Below, we will see some examples of importing binary files saved in two popular statistical
analysis applications – SAS and Stata. We will use the haven package to import both.

15.4 Importing SAS data sets

SAS actually allows users to save data in more than one type of binary format. Data can
be saved as SAS data sets or as SAS Transport files. SAS data set file names end with the
.sas7bdat file extension. SAS Transport file file names end with the .xpt file extension.

In order to import a SAS data set, we typically only need to pass the correct file path to
haven’s read_sas() function.

You may click here to download this file to your computer.

sas <- read_sas("height_and_weight.sas7bdat")

sas

# A tibble: 4 x 4
ID sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

�Here’s what we did above:

• We used haven’s read_sas() function to import a SAS data set. That data was imported
as a data frame and we assigned that data frame to the R object called sas.
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In addition to SAS data sets, data that has been altered in SAS can also be saved as a SAS
transport file. Some of the national, population-based public health surveys (e.g., BRFSS and
NHANES) make their data publicly available in this format.

You can download the 2018 BRFSS data as a SAS Transport file here. About halfway down
the webpage, there is a link that says, “2018 BRFSS Data (SAS Transport Format)”.

Clicking that link should download the data to your computer. Notice that the SAS Transport
file is actually stored inside a zip file. You can unzip the file first if you would like, but you
don’t even have to do that. Amazingly, you can pass the path to the zipped .xpt file directly
to the read_xpt() function like so:

brfss_2018 <- read_xpt("LLCP2018XPT.zip")

head(brfss_2018)

# A tibble: 6 x 275
`_STATE` FMONTH IDATE IMONTH IDAY IYEAR DISPCODE SEQNO `_PSU` CTELENM1

<dbl> <dbl> <chr> <chr> <chr> <chr> <dbl> <chr> <dbl> <dbl>
1 1 1 01052018 01 05 2018 1100 20180000~ 2.02e9 1
2 1 1 01122018 01 12 2018 1100 20180000~ 2.02e9 1
3 1 1 01082018 01 08 2018 1100 20180000~ 2.02e9 1
4 1 1 01032018 01 03 2018 1100 20180000~ 2.02e9 1
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5 1 1 01122018 01 12 2018 1100 20180000~ 2.02e9 1
6 1 1 01112018 01 11 2018 1100 20180000~ 2.02e9 1
# i 265 more variables: PVTRESD1 <dbl>, COLGHOUS <dbl>, STATERE1 <dbl>,
# CELLFON4 <dbl>, LADULT <dbl>, NUMADULT <dbl>, NUMMEN <dbl>, NUMWOMEN <dbl>,
# SAFETIME <dbl>, CTELNUM1 <dbl>, CELLFON5 <dbl>, CADULT <dbl>,
# PVTRESD3 <dbl>, CCLGHOUS <dbl>, CSTATE1 <dbl>, LANDLINE <dbl>,
# HHADULT <dbl>, GENHLTH <dbl>, PHYSHLTH <dbl>, MENTHLTH <dbl>,
# POORHLTH <dbl>, HLTHPLN1 <dbl>, PERSDOC2 <dbl>, MEDCOST <dbl>,
# CHECKUP1 <dbl>, EXERANY2 <dbl>, SLEPTIM1 <dbl>, CVDINFR4 <dbl>, ...

�Here’s what we did above:

• We used haven’s read_xpt() function to import a zipped SAS Transport File. That
data was imported as a data frame and we assigned that data frame to the R object
called brfss_2018.

• Because this is a large data frame (437,436 observations and 275 variables), we used the
head() function to print only the first 6 rows of the data to the screen.

But, this demonstration actually gets even cooler. Instead of downloading the SAS Transport
file to our computer before importing it, we can actually sometimes import files, including
SAS Transport files, directly from the internet.

For example, you can download the 2017-2018 NHANES demographic data as a SAS Transport
file here
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If you right-click on the link that says, “DEMO_I Data [XPT - 3.3 MB]”, you will see an
option to copy the link address.

Click “Copy Link Address” and then navigate back to RStudio. Now, all you have to do
is paste that link address where you would normally type a file path into the read_xpt()
function. When you run the code chunk, the read_xpt() function will import the NHANES
data directly from the internet (assuming you are connected to the internet). �

nhanes_demo <- read_xpt("https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/DEMO_J.XPT")

head(nhanes_demo)

# A tibble: 6 x 46
SEQN SDDSRVYR RIDSTATR RIAGENDR RIDAGEYR RIDAGEMN RIDRETH1 RIDRETH3 RIDEXMON
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 93703 10 2 2 2 NA 5 6 2
2 93704 10 2 1 2 NA 3 3 1
3 93705 10 2 2 66 NA 4 4 2
4 93706 10 2 1 18 NA 5 6 2
5 93707 10 2 1 13 NA 5 7 2
6 93708 10 2 2 66 NA 5 6 2
# i 37 more variables: RIDEXAGM <dbl>, DMQMILIZ <dbl>, DMQADFC <dbl>,
# DMDBORN4 <dbl>, DMDCITZN <dbl>, DMDYRSUS <dbl>, DMDEDUC3 <dbl>,
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# DMDEDUC2 <dbl>, DMDMARTL <dbl>, RIDEXPRG <dbl>, SIALANG <dbl>,
# SIAPROXY <dbl>, SIAINTRP <dbl>, FIALANG <dbl>, FIAPROXY <dbl>,
# FIAINTRP <dbl>, MIALANG <dbl>, MIAPROXY <dbl>, MIAINTRP <dbl>,
# AIALANGA <dbl>, DMDHHSIZ <dbl>, DMDFMSIZ <dbl>, DMDHHSZA <dbl>,
# DMDHHSZB <dbl>, DMDHHSZE <dbl>, DMDHRGND <dbl>, DMDHRAGZ <dbl>, ...

�Here’s what we did above:

• We used haven’s read_xpt() function to import a SAS Transport File directly from the
NHANES website. That data was imported as a data frame and we assigned that data
frame to the R object called nhanes_demo.

• Because this is a large data frame (9,254 observations and 46 variables), we used the
head() function to print only the first 6 rows of the data to the screen.

15.5 Importing Stata data sets

Finally, we will import a Stata data set (.dta) to round out our discussion of importing data
from other statistical analysis software packages. There isn’t much of anything new here – you
could probably have even guessed how to do this without us showing you.

You may click here to download this file to your computer.

stata <- read_stata("height_and_weight.dta")

stata

# A tibble: 4 x 4
ID sex ht_in wgt_lbs
<chr> <chr> <dbl> <dbl>

1 001 Male 71 190
2 002 Male 69 176
3 003 Female 64 130
4 004 Female 65 154

�Here’s what we did above:

• We used haven’s read_stata() function to import a Stata data set. That data was
imported as a data frame and we assigned that data frame to the R object called stata.

You now know how to write code that will allow you to import data stored in all of the file
formats that we will use in this book, and the vast majority of formats that you are likely to
encounter in your real-world projects. In the next section, We will introduce you to a tool in
RStudio that makes importing data even easier.
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16 RStudio’s Data Import Tool

In previous chapters, we learned how to programmatically import data into R. In this chap-
ter, we will briefly introduce you to RStudio’s data import tool. Conceptually, we won’t be
introducing anything you haven’t already seen before. We just want to make you aware of this
tool, which can be a welcomed convenience at times.

For this example, we will use the import tool to help us import the same height and weight
csv file we imported in the chapter on importing plain text files.

You may click here to download this file to your compter.

To open RStudio’s data import tool, click the Import Dataset dropdown menu near the top
of the environment pane.

Next, because this is a csv file, we will choose the From Text (readr) option from the drop-
down menu. The difference between From Text (base) and From Text (readr) is that From
Text (readr) will use functions from the readr package to import the data and From Text
(base) will use base R functions to import the data.
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After you select a file type from the import tool dropdown menu, a separate data import
window will open.

At this point, you should click the browse button to locate the file you want to import.
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Doing so will open your operating system’s file explorer window. Use that window to find and
select the file you want to import. Again, we am using comma.csv for this demonstration.

After selecting you file, there will be some changes in the data import window. Specifically,
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• The file path to the raw data you are importing will appear in the File/URL field.

• A preview of how R is currently parsing that data will appear in the Data Preview field.

• Some or all of the import options will become available for you to select or deselect.

• The underlying code that R is currently using to import this data is displayed in the
Code Preview window.

• The copy to clipboard icon becomes clickable.

Importing this simple data set doesn’t require us to alter many of the import options. However,
we do want to point out that you can change the variable type by clicking in the column
headers in the Data Preview field. After clicking, a dropdown menu will display that allows
you to change variable types. This is equivalent to adjusting the default values passed to the
col_types argument of the read_csv() function.

We will go ahead and change the ht_in and wgt_lbs variables from type double to type integer
using the dropdown menu.
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At this point, our data is ready for import. You can simply press the Import button in the
bottom-right corner of the data import window. However, we are going to suggest that you
don’t do that. Instead, we’re going to suggest that you click the clipboard icon to copy the
code displayed in the Code Preview window and then click the Cancel button.

Next, return to your R script or Quarto file and paste the code that was copied to your
clipboard. At this point, you can run the code as though you wrote it. More importantly, this
code is now a part of the record of how you conducted your data analysis. Further, if someone
sends you an updated raw data set, you may only need to update the file path in your code
instead of clicking around the data import tool again.
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That concludes the portion of the book devoted to importing data. In the next chapter, we
will discuss strategies for exporting data so that you can store it in a more long-term way
and/or share it with others.
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17 Exporting Data

The data frames we’ve created so far don’t currently live in our global environment from one
programming session to the next because we haven’t yet learned how to efficiently store our
data long-term. This limitation makes it difficult to share our data with others or even to
come back later to modify or analyze our data ourselves. In this chapter, you will learn to
export data from R’s memory to a file on your hard drive so that you may efficiently store it
or share it with others. In the examples that follow, we’re going to use this simulated data.

demo <- data.frame(
id = c("001", "002", "003", "004"),
age = c(30, 67, 52, 56),
edu = c(3, 1, 4, 2)

)

� Here’s what we did above:

• We created a data frame that is meant to simulate some demographic information about
4 hypothetical study participants.

• The first variable (id) is the participant’s study id.

• The second variable (age) is the participant’s age at enrollment in the study.

• The third variable (edu) is the highest level of formal education the participant com-
pleted. Where:

– 1 = Less than high school

– 2 = High school graduate

– 3 = Some college

– 4 = College graduate
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17.1 Plain text files

Most of readr’s read_ functions that were introduced in the importing plain text files chapter
have a write_ counterpart that allow you to export data from R into a plain text file.

Additionally, all of havens read_ functions that were introduced in the importing binary files
chapter have a write_ counterpart that allow you to export data from R into SAS, Stata, and
SPSS binary file formats.

Interestingly, readxl does not have a write_excel() function for exporting R data frames as
.xls or .xlsx files. However, the importance of this is mitigated by the fact that Excel can open
.csv files and readr contains a function (write_csv())for exporting data frames in the .csv
file format. If you absolutely have to export your data frame as a .xls or .xlsx file, there are
other R packages capable of doing so (e.g., xlsx).

So, with all these options what format should you choose? our answer to this sort of depends
on the answers to two questions. First, will this data be shared with anyone else? Second, will
we need any of the metadata that would be lost if we export this data to a plain text file?

Unless you have a compelling reason to do otherwise, we’re going to suggest that you always
export your R data frames as csv files if you plan to share your data with others. The reason
is simple. They just work. we can think of many times when someone sent me a SAS or Stata
data set and we wasn’t able to import it for some reason or the data didn’t import in the way
that we expected it to. we don’t recall ever having that experience with a csv file. Further,
every operating system and statistical analysis software application that we’re aware of is able
to accept csv files. Perhaps for that reason, they have become the closest thing to a standard
for data sharing that exists – at least that we’re aware of.

Exporting an R data frame to a csv file is really easy. The example below shows how to export
our simulated demographic data to a csv file on our computer’s desktop:

readr::write_csv(demo, "demo.csv")

�Here’s what we did above:

• We used readr’s write_csv() function to export a data frame called demo in our global
environment to a csv file on our desktop called demo.csv.

• You can type ?write_csv into your R console to view the help documentation for this
function and follow along with the explanation below.

• The first argument to the write_csv() function is the x argument. The value passed to
the x argument should be a data frame that is currently in our global environment.

• The second argument to the write_csv() function is the path argument. The value
passed to the path should be a file path telling R where to create the new csv file.
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– You name the csv file directly in the file path. Whatever name you write after the
final slash in the file path is what the csv file will be named.

– As always, make sure you remember to include the file extension in the file path.

Even if you don’t plan on sharing your data, there is another benefit to saving your data as a
csv file. That is, it’s easy to open the file and take a quick peek if you need to for some reason.
You don’t have to open R and load the file. You can just find the file on your computer,
double-click it, and quickly view it in your text editor or spreadsheet application of choice.

However, there is a downside to saving your data frames to a csv file. In general, csv files
don’t store any metadata, which can sometimes be a problem (or a least a pain). For example,
if you’ve coerced several variables to factors, that information would not be preserved in the
csv file. Instead, the factors will be converted to character strings. If you need to preserve
metadata, then you may want to save you data frames in a binary format.

17.2 R binary files

In the chapter on importing binary files we mentioned that most statistical analysis software
allows you to save your data in a binary file format. The primary advantage to doing so is that
potentially useful metadata is stored alongside your analysis data. We were first introduced to
factor vectors in Let’s Get Programming chapter. There, we saw how coercing some of your
variables to factors can be useful. However, doing so requires R to store metadata along with
the analysis data. That metadata would be lost if you were to export your data frame to a
plain text file. This is an example of a time when we may want to consider exporting our data
to a binary file format.

R actually allows you to save your data in multiple different binary file formats. The two
most popular are the .Rdata format and the .Rds format. we’re going to suggest that you use
the .Rds format to save your R data frames. Exporting to this format is really easy with the
readr package.

The example below shows how to export our simulated demographic data to an .Rds file on
our computer’s desktop:

readr::write_rds(demo, "demo.rds")

�Here’s what we did above:

• We used readr’s write_rds() function to export a data frame called demo in our globabl
environment to an .Rds file on our desktop called demo.rds.

• You can type ?write_rds into your R console to view the help documentation for this
function and follow along with the explanation below.
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• The first argument to the write_rds() function is the x argument. The value passed to
the x argument should be a data frame that is currently in our global environment.

• The second argument to the write_csv() function is the path argument. The value
passed to the path should be a file path telling R where to create the new .Rds file.

– You name the .Rds file directly in the file path. Whatever name you write after the
final slash in the file path is what the .Rds file will be named.

– As always, make sure you remember to include the file extension in the file path.

To load the .Rds data back into your global environment, simply pass the path to the .Rds
file to readrs read_rds() function:

demo <- readr::read_rds("demo.rds")

There is a final thought we want to share on exporting data frames. When we got to the end
of this chapter, it occurred to me that the way we wrote it may give the impression that that
you must choose to export data frames as plain text files or binary files, but not both. That
isn’t the case. we frequently export our data as a csv file that we can easily open and view
and/or share with others, but also export it to an .Rds file that retains useful metadata we
might need the next time we return to our analysis. we suppose there could be times that
your files are so large that this is not an efficient strategy, but that is generally not the case
in our projects.
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Part IV

Collaboration
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18 Introduction to git and GitHub

If you read this book’s introductory material, specifically the section on Contributing to R4Epi,
then you have already been briefly exposed to GitHub. If not, taking a quick look at that
section may be useful. GitHub is a website specifically designed to facilitate collaboratively
creating programming code. In many ways, GitHub is a cloud-based file storage service like
Dropbox, Google Drive, and OneDrive, but with special tools built-in for collaborative coding.
Git is the name of the versioning software that powers many of GitHub’s special tools. We
will talk about what versioning means shortly.

The goal of this, and the next few, chapters isn’t to teach you everything you need to know
about git and GitHub. Not even close! That would fill up its own book. The goal here is just
to expose you to git and GitHub, show you a brief example of how they may be useful to you,
and provide you with some resources you can use to learn more if you’re interested.

But, why should you be interested in the first place? Well, there are at least four overarching
reasons why you should consider learning to use git and GitHub as part of your workflow when
your projects include data and/or coding:
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1. Versioning

2. Preservation

3. Reproducibility

4. Collaboration

We’ll elaborate on what each of these means to us below. Then, we will introduce you to git
and GitHub, and explain why they are some of the best tools currently available to help you
with versioning and collaborating. We’ll go ahead and warn you now — git and GitHub can be
hard to wrap your mind around at first. In fact, using git and GitHub still frequently causes
us confusion and frustration at times. However, we still believe that the payoff is ultimately
worth the upfront investment in time and frustration. Additionally, we will do our best to
make this introduction as gentle, comprehensible, and practically applicable as possible.

18.1 Versioning

Have you ever worked on a paper or report and had a folder on your computer that looked
something like this?

Saving a bunch of different versions of a file like this is a real mess. It becomes even worse
when you are trying to work with multiple people. What is contained in each document again?
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What order were the documents created in? What are the differences between the documents?
Versioning helps us get around all of these problems.

Instead of jumping straight into learning versioning with git and GitHub, we will start our
discussion about versioning using a simple example in Google Docs. Not because Google Docs
are especially relevant to anything else in this course, but because there are a lot of parallels
between the Google Docs versioning system and the git versioning system when it is paired
with Github. However, the Google Docs versioning system is a little bit more basic, easy to
understand, and easy to experiment with. Later, we will refer back to some of these Google
Docs examples when we are trying to explain how to use git and GitHub. If you’d like to do
some experimenting of your own, feel free to navigate to https://docs.google.com/ now and
follow along with the following demonstration.

First, we will type a little bit of text in our Google Doc. It doesn’t really matter what we type
— this is purely for demonstration purposes. In the example below, we type “Here is some
text.”

Now, let’s say that we decide to make a change to our text. Specifically, we decide to replace
“some” with “just a little.”

Now, let’s say that we changed our mind again and we want to go back to using the original
text. In this case, it would be really easy to go back to using the original text even without
versioning. We could just use “undo” or even retype the previous text. But, let’s pretend for
a minute that we changed a lot of text, and that we made those changes several weeks ago.
Under those circumstances, how might we view the original version of the document? We can
use the Google Docs versioning system. To do so, we can click File then Version history
then See version history. This will bring up a new view that shows us all the changes
we’ve made to this document, and when we made them.

This is great! We don’t have to save a bunch of different files like we saw in the “messy” folder
at the beginning of this section. Instead, there is only one document, and we can see all the
versions of that document, who created the various versions of that document, when all the
various versions of that document were created, and exactly what changed from one version
to the next. In other words, we have a complete record of the evolution of this document in
the version history — how we got from the blank document we started with to the current
version of the document we are working with today.

Further, if we want to turn back the clock to a previous version of the document, we need only
select that version and click the Restore this version button like this.

But, you can probably imagine how difficult it can be to find a previous version of a document
by searching through a list of dates. In the example above, there were only three dates to look
through, but in a real work document, there may be hundreds of versions saved. The dates, by
themselves, aren’t very informative. Luckily, when we hit key milestones in the development
of our document, Google Docs allows us to name them. That way, it will be easy to find that
version in the future if we ever need to refer to it (assuming we give it an informative name).
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For example, let’s say that we just added a table to our document that includes the mean
values of the variables X and Y for two groups of people - Group 1 and Group 2. Completing
this table is a key milestone in the evolution of our document and this is a great time to name
the current version of the document just in case we ever need to refer back to it. To do so, we
can click File then Version history then Name current version.

Notice that in the example above I used the word commit instead of the word save. In this
case, they essentially mean the same thing, but soon you will see that git also uses the word
commit to refer to taking a snapshot of the state of our project — similar to the way we just
took a snapshot of the state of our document.

Now let’s say that we decide to use medians in our table instead of means. After making that
change, our document now looks like this.

Figure 18.1: A gif about switching back to an old version in Google Docs.

Can you guess what we are about to do next? That’s right! We changed our minds again
and decided to switch back to using the mean values in the table. No problem! We can easily
search for the version of the document that we committed, which includes the table of mean
values. We can then restore that version as we did above.
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18.2 Preservation

In addition to versioning, the ability to preserve all of your code and related project files in
the cloud is another great reason to consider using GitHub. In other words, you don’t have
to worry about losing your code if your computer is lost, damaged, or replaced. All of your
project files can easily be retrieved and restored from GitHub. Although the same is true for
other cloud-based file storage services like Dropbox, Google Drive, and OneDrive, remember
that GitHub has special built-in tools that those services do not provide.

18.3 Reproducibility

Reproducibility, or more precisely, reproducible research, is a term that may be unfamiliar
to many of you. Peng and Hichs (2021) give a nice introduction to reproducible research:7

Scientific progress has long depended on the ability of scientists to communicate
to others the details of their investigations… In the past, it might have sufficed
to describe the data collection and analysis using a few key words and high-level
language. However, with today’s computing-intensive research, the lack of details
about the data analysis in particular can make it impossible to recreate any of the
results presented in a paper. Compounding these difficulties is the impracticality
of describing these myriad details in traditional journal publications using natural
language. To address this communication problem, a concept has emerged known
as reproducible research, which aims to provide for others far more precise descrip-
tions of an investigator’s work. As such, reproducible research is an extension of
the usual communications practices of scientists, adapted to the modern era.

They go on to define reproducible research in the following way:7 8

A published data analysis is reproducible if the analytic data sets and the computer
code used to create the data analysis are made available to others for independent
study and analysis.

We will not delve deeper into the general importance and challenges of reproducible research
in this book; however, we encourage readers who are interested in learning more about repro-
ducible research to take a look at both of the articles cited above. Additionally, we believe it’s
important to highlight that GitHub is a great tool for making our research more reproducible.
Specifically, it provides a platform where others can easily download the data (when we are
allowed to make it available), computer code, and documentation needed to recreate our re-
search results. This is a great asset for scientific progress, but only if researchers like us use it
effectively.
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18.4 Collaboration

In the sections above, we discussed the ways in which git and GitHub are tools we can use for
versioning, preserving our code in the cloud, and making our research more reproducible. All
of these are important benefits of using git and GitHub even if we don’t routinely collaborate
with others to complete our projects. However, the power of GitHub is even greater when
we think about using it as a tool for collaboration — including collaboration with our future
selves.

For example, one research project that we (the authors) both work on is the Detection of Elder
abuse Through Emergency Care Technicians (DETECT) project. Let’s say that we would like
to start collaborating with you on DETECT. Perhaps we need your help preprocessing some
of the DETECT data and conducting an analysis. So, how do we get started?

Because we created a repository on GitHub for the DETECT project, all of the files and
documentation you need to get started are easily accessible to you. In fact, you don’t even have
to reach out to us first for access. They are freely available to anyone who is interested. Please
go ahead and use the following URL to view the DETECT repository now: https://github.
com/brad-cannell/detect_pilot_test_5w. GitHub repositories may look a little confusing at
first, but you will get used to them with practice.

Note

�Side Note: Repository is a git term that can seem a little confusing or intimidating
at first. However, it’s really no big deal. You can think of a git repository as a folder
that holds all of the files related to your project. On GitHub, each repository has its
own separate website where people from anywhere in the world can access the files and
documents related to your project. They can also communicate with you through your
GitHub repository, post issues to your GitHub repository if they encounter a problem,
and contribute code to your project.

We could have emailed the files back and forth, but what if we accidentally forget to send you
one? What if one of the files is too large to email? What if two people are working on the
same file at the same time and send out their revisions via email? Which version should we
use? In the chapters that follow, we will show you how using GitHub to share project files
gets around these, and other, collaboration issues.

18.5 Summary

In summary, git and GitHub are awesome tools to use when our projects involve research
and/or data analysis. They allow us to store all of our files in the cloud with the added benefit
of versioning and many other collaboration tools. The primary disadvantage of using GitHub
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instead of just emailing code files or using general-purpose cloud storage services is its learning
curve. But, in the following chapters, we hope to give you enough knowledge to make GitHub
immediately useful to you. Over time, you can continue to hone your GitHub skills and really
take advantage of everything it has to offer. We think if you make this initial investment, it is
unlikely that you will ever look back.
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19 Using git and GitHub

In the previous chapter, we discussed why we should consider learning to use git and GitHub
as part of our workflow when our projects include data and/or coding. In this chapter, we will
begin to talk about how to use git and GitHub. We will also introduce a third tool, GitKraken,
that makes it easier for us to use git and GitHub.

19.1 Install git

Before we can use git, we will need to install it on our computer. The following chapter of Pro
Git provides instructions for installing git on Linux, Windows, and MacOS operating systems:
Get Started Installing Git.

If you are using a Mac, it’s likely that you already have git — most Macs ship with git installed.
To check, open your Terminal app. The Terminal app is located in the Utilities folder, which is
located in the Applications folder. In the terminal app, type “git version”. If you see a version
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number, then it is already installed. If not, then please follow the installation instructions
given in the link to Pro Git above.

Figure 19.1: Checking git version in the MacOS terminal.

19.2 Sign up for a GitHub account

We have already alluded to the fact that git and GitHub are not the same thing. You can use
git locally on your computer without ever using GitHub. Conversely, you can browse GitHub,
and even do some limited contributing to code, without ever installing git on your computer
(e.g., see Contributing to R4Epi. However, git and GitHub work best when used together.
You don’t need to download anything to start using GitHub, but you will need to sign up for
a free GitHub account. To do so, just navigate to https://github.com/
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19.3 Install GitKraken

Git is software for our computer. However, unlike most of the software we are used to using,
git does not have a graphical user interface (GUI - pronounced “gooey”). In other words, there
is no git application that we can open and start clicking around in. Instead, by default, we
interact with git by typing commands into the computer’s terminal – also called “command
line” in GitHub’s documentation – like we saw in Figure 19.1. The commands we type to use
git kind of look like their own programming language. In our experience, interacting with git
in the terminal is awkward, inefficient, and unnecessary for most new git users. And learning
to use git in this way is a barrier to getting started in the first place. �

Thankfully, other third-party vendors have made excellent GUI’s for git that we can download
and use for free. Our current favorite is called GitKraken. To use GitKraken, you will first
need to navigate to the GitKraken website (https://www.gitkraken.com/). If it helps, you can
think of git and GitKraken as having a relationship that is very similar to the relationship
between R and RStudio. R is the language. RStudio is the application that makes it easier
for us to use the R language to work with data. Similarly, git is the language and GitKraken
is the application that makes it easier for us to use git to track versions of our project files.

Before you use the GitKraken client, you will need to sign up for an account. It may say
that you need to sign up for a free trial. Go ahead and do it. The free trial is just for the
“Pro” version. At the end of the free trial, you will automatically be downgraded to the “Free”
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version, which is… free. And, the free version will do everything you need to do to follow along
with this book.

Next, you will need to click on the “Try Free” button. Then, download and install the
GitKraken Client to your computer.
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As you are installing GitKraken, it should ask you if you want to sign up with your GitHub
account. Yes, you do! It will make your life much easier down the road. If you didn’t sign up
for a GitHub account in the previous step, please go back and do so.

Then click the green Continue authorization button.
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Then, you will be asked to sign into your GitHub account – possibly using your two-factor
authentication. When you see the success screen, you can close your browser and return to
GitKraken.

The next thing you will do is create a profile. After you create a profile, you will be asked if
you want the Repo Tab first or the Terminal Tab first. We recommend that you select the
Repo Tab option.
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Once you have installed Git and GitKraken, and you’ve created your GitHub account, you
will have all the tools you need to follow along with all of the examples in this book. Speaking
of examples, let’s go ahead and take a look at a couple now.

19.4 Example 1: Contribute to R4Epi

If you haven’t already done so, please read the contributing to R4Epi portion of the book’s
welcome page. This will give you a gentle introduction to using GitHub, for a very practical
purpose, without even needing to use git or GitKraken.

19.5 Example 2: Create a repository for a research project

In this example, we will learn how to create our very own git and GitHub repositories from
scratch. We can immediately begin using the lessons from this example for our research
projects – even if we aren’t collaborating with others on them. Remember, there are at least
four overarching reasons why you should consider learning to use git and GitHub as part of
your workflow for your projects, and collaboration is only one of them. Not to mention the
fact that it is often useful to think of our future selves as other collaborators, which we have
mentioned and/or alluded to many times in this book.
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There are many possible ways we could set up our project to take advantage of all that git and
GitHub have to offer. We’re going to show you one possible sequence of steps in this example,
but you may decide that you prefer a different sequence as you get more experience, and that’s
totally fine!

This example is long! So, we created a brief outline that you can quickly reference in the
future. Details are below.

Step 1: Create a repository on GitHub
Step 2: Clone the repository to your computer
Step 3: Add an R project file to the repository
Step 4: Update and commit gitignore
Step 5: Keep adding and committing files

Step 1: Create a repository on GitHub

The first thing we will do is create a repository on GitHub. Repositories are the fundamental
organizational units of your GitHub account. Other cloud storage services like Dropbox are
organized into file folders at every level. Meaning, you have your main Dropbox folder, which
has other folders nested inside of it – many of which may have their own nested folders. Your
GitHub account also stores all your files in file folders; however, the level one folders — those
that aren’t nested inside of another folder — are called repositories (represented by the book
icon in the image below and on the GitHub website). Typically, each repository is an entire,
self-contained project. Like a file folder, each repository can contain other folders, code files,
media files, data sets, and any other type of file needed to reproduce your research project.
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Figure 19.2: GitHub repositories compared to Dropbox.

Warning

Just because we can upload data to GitHub doesn’t mean we should upload data to
GitHub. Often, the data we use in epidemiology contains protected health information
(PHI) that we must go to great lengths to keep secure. In general, GitHub is NOT
considered a secure place to store our data and should not be used for this purpose.
Below, we will demonstrate how to make sure our data isn’t uploaded to GitHub with
the rest of the files in our repository.

To create a new repository in GitHub, we will simply click the green Create repository
button. This button will look slightly different depending on where we are at in the GitHub
website. The screenshot below was taken from Arthur Epi’s (our fictitious research assistant)
main landing page (i.e., https://github.com/).
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After clicking the green Create repository button, the next page Arthur will see is the setup
page for his repository. For the purposes of this example, he will use the following information
to set it up.

• Repository name: As the on-screen prompt says, great repository names are short
and memorable. Further, the repository name must be unique to his account (i.e.,
he can’t have two repositories with the same name), and it can only include letters,
numbers, dashes (-), underscores (_), and periods (.). We recommend using underscores
to separate words to be consistent with the object naming guidelines from coding-best-
practices. For this example, he will name the repository r4epi_example_project.

• Description: The description is optional, but we like to fill it in. Arthur’s description
should also be brief. Ideally it will allow others scanning our repository to quickly
determine what it’s all about. For this example, the description will say, “An example
repository that accompanies the git and GitHub chapters in the R4Epi book.”

• Public/Private: We can choose to make our repositories public or private. If we make
them public, they can be viewed by anyone on the internet. If we make them private,
we can control who is able to view them. At first, you may be tempted to make your
repositories private. It can feel vulnerable to put your project/code out there for the
entire internet to view. However, we are going to recommend that you make all of
your repositories public and be thoughtful about the files/documents/information you
choose to upload to them. For example, we NEVER want to upload data containing
information with PHI or individual identifiers in it. So, we will often need to figure out a
different way to share our data with others who legitimately need access to it, but we can
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often use GitHub to share all other files related to the project. Making our repository
public makes it easier for others to locate our work and potentially collaborate with us.

• Add a README file: A README file has a special place in GitHub. Under the
hood, it is just a markdown file. No different than the Quarto files we learned about
in the chapter on Quarto files (. However, naming it README gives it a special status.
When we include a README file in our repository, GitHub will automatically add it to
our repository’s homepage. We should use it to give others more information about our
project, what our repository does, how to use the files in our repository, and/or how to
contribute. So, we will definitely want a README file. Arthur may as well go ahead
and check the box to create it along with his repository (although, we can always add it
later).

• Add .gitignore: We will discuss .gitignore later. Briefly, you can think of it as a list
of files we are telling GitHub to ignore (i.e., not to track). This gets back to versioning,
which we discussed in the Versioning section of the introduction to git and GitHub
chapter. For now, Arthur will just leave it as is.

• License: The GitHub documentation states that, “Public repositories on GitHub are of-
ten used to share open-source software. For your repository to truly be open source, you’ll
need to license it so that others are free to use, change, and distribute the software.”9

Because we aren’t currently using our repository to create and distribute open-source
software (like R!!), we don’t need to worry about adding a license. That isn’t to say
that you won’t ever need to worry about a license. For more on choosing a license,
we can consult the GitHub documentation or potentially consult with our employer or
study sponsor. For example, our universities have officials that help us determine if our
repositories need a license.
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Now, that he has completed all the setup steps, Arthur can click the green Create repository
button. This will create his repository and take him to its homepage on GitHub. As you can
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see in the screenshot below (you can also navigate to the website yourself), GitHub creates
a basic little website for the repository. The top middle portion of the page (outlined in red
below) displays all of the files and folders in the repository. Currently, the repository only
contains one file – README.md – but Arthur will add others soon.

To the right of files and folders section of the homepage is the About section of the page.
This section (outlined in red below) contains the repository’s description, tags, and other
information that we will ignore for now.
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Below the files and folders section of the page is where the README file is displayed. Notice
that by default, GitHub added the repository’s name and description to the README file.
Not a bad start, but we can add all kinds of cool stuff to README – including tables, figured,
images, links, and other media. In fact, you can add almost anything to a README file that
you can add to any other website. This is a great place to get creative and really make your
project stand out!
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Now, Arthur has a working GitHub repository up and running. Let’s pause for a moment to
and celebrate! �

Okay, celebration complete. Now, what does he do with this new GitHub repository? Well,
he does the four things covered in Introduction to git and GitHub

1. He will start adding files to his repository and document their purpose and evolution
with versioning.

2. In the process, he will preserve his files, and by extension, his project.

3. Doing so will help to make his research more reproducible.

4. And make it easier for him to collaborate with others – including his future self.

Let’s start by taking a look at versioning in GitHub. As we discussed in the Versioning section
of the Introduction to git and GitHub chapter, GitHub uses the word commit to refer to taking
a snapshot of the state of our project, similar to how we might typically think about saving a
version of a document we are working on. We saw how we could view the version history of our
Google Doc by clicking File then Version history then See version history. In GitHub,
we can similarly view the version history (also called the commit history) of our repository.
To do so, we navigate to our repository’s homepage, and click on the word commit in the top
right corner of the files section (outlined in red below).
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This will take us to our repository’s version history page. Currently, this repository only has
one commit – the “Initial commit”. This name is used by convention in the GitHub community
to refer to the first commit in the repository. The history also tells us when the commit was
made and who made it. On the right side of the commit, there are three buttons.
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1. The first button on the left that looks like two partially overlapping boxes will copy the
commit’s ID so that we can paste it elsewhere if we want. In GitHub, every commit is
assigned a unique ID, which is also called an “SHA” or “hash”. The commit ID is a string
of 40 characters that can be used to refer to a specific commit. The 274519 displayed
on the middle button is the first 7 characters of this commit’s ID.

2. As noted above, the middle button is labeled with the first 7 characters of this commit’s
ID - 274519. Clicking on it will take us to a new screen with the details of what this
commit does to the files in the repository (i.e., additions, edits, and deletions). Arthur
will click it so we take a look momentarily.

3. The button on the far right, which is labeled with two angle brackets (< >) will take us
back to the repository’s homepage. However, the files in the repository will be set back
to the state they were in when the commit was made. In this case, there is only one
commit. So, there’s no difference between the current state of the repository and the
state it would be in if Arthur clicked this button. However, this button can be useful.
If Arthur makes some changes to a file and then later wants to see what the file looked
like before he made those changes, he can use this button to take a look.

Now, Arthur will click the middle button labeled with the short version of the commit ID.

On the page he is taken to, we can see more details about what commit 274519 does to
the files in the repository. The top section of the page (outlined in red below) contains
pretty much the same information we saw on the previous page. The little symbol on
the left that looks kind of like a backwards 4 with open circles at the ends of the lines
tells us which branch we are operating on. Branches are a more advanced topic that
we will discuss later. Currently, our repository only has one branch – the default main
branch – and the symbol followed by the word “main” is telling us that this commit is
on the main branch. To the far right of this section, there is a button that says Browse
files. Clicking this button does the exact same thing as the button on the previous page
that was labeled with two angle brackets (< >). Below the Browse files button, are
the words 0 parents and commit 277451996a7e9a0a6e583124d762db2a9cd439a2. This
tells us that this commit doesn’t have any parent commits and that the full commit ID
is 277451996a7e9a0a6e583124d762db2a9cd439a2. We discussed commit ID’s above. The
parent commit is the commit or commits that this commit is based on. In other words,
what were the other things that happened to get us to this point? Because this is the initial
commit, there are no parent commits.
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The middle section of the commit details page tells us that applying this commit to the
repository changes 1 file. In that file, there are two additions and no deletions. Below this
text we can see which file was changed - README.md. This is also called the diff view because
we can see the differences between this version of the file and previous versions of the file. In
this case, because there wasn’t a previous version of the file, we just see the two additions
that were made to the file. They are the level one header that was added to the first line
of the file (i.e., # r4epi_example_project) and our project’s description was added to the
second line of the file. These additions were made automatically by GitHub. We know they
are additions because the background color is green and there is a little plus sign immediately
to their left. We know which lines of the file were changed because GitHub shows us the line
number immediately to the left of the plus signs.
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The final section of the commit details page shows us any existing comments that Arthur, or
others, made about this commit. It also allows us, or others to create a new comment, using
the text box.

In the screenshot below, we can see an example comment. Note all the cool things features
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GitHub comments allow us to use. We can format the text, add bullets, add links, and even
add clickable checkboxes.

Finally, clicking the green Comment on this commit button adds our comment to the commit
details page.
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Let’s pause here for a moment and try to appreciate how powerful GitHub already is compared
to other cloud-based file storage services like Dropbox, Google Drive, or OneDrive. Like those
file storage services, all of our files are backed up and preserved in the cloud and can easily be
shared with others. However, unlike Dropbox, Google Drive, and OneDrive, we can turn our
repository’s homepage into a little website describing our project, we can view all the changes
that have been made to our project over time, we can see which specific lines of each file have
changed and how, and we can gather all comments, questions, and concerns about the files in
one place. Oh, and it’s Free!

Step 2: Clone the repository to your computer

At this point, Arthur’s repository, which is just a fancy file folder, and the one file in his
repository (README.md), only exist on the GitHub cloud.
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Note

�Side Note: What is “the GitHub cloud”? For our purposes, the cloud just refers to a
specific type of computer – called a server – that physically exists somewhere else in the
world, which we can connect to over the internet. GitHub owns many servers, and our
files are stored on one of them. After we connect to the GitHub server, we can pass files
back and forth between our computer and GitHub’s computer (i.e., the server).

Figure 19.3: GitHub Cloud.

So, how does he get the repository from the GitHub cloud to his computer so that he can start
making changes to it?

He will clone the repository to his computer. Don’t get thrown off by the funny name. You
can simply think “make a copy of” whenever you see the word “clone” for now. So, he will
“make a copy of” the repository on his computer. However, cloning the repository actually
does two very useful things at once:

1. It creates a copy of our repository, and all of the files and folders in it, on our computer.

2. It creates a connection between our computer and the GitHub cloud that allows us to
pass files back and forth.

There are multiple possible ways we could clone our repository, but we’re going to use
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GitKraken in this book. If you did not already download GitKraken and connect it with
your GitHub account as demonstrated at the beginning of the chapter, please do so now.

When we open GitKraken, we should see something similar to the screenshot below. Arthur
will start the cloning process by clicking the Clone a repo button.

When the Repository Management dialogue box opens, he will need to make 3 changes.

1. Click GitHub.com in the clone menu. This tells GitKraken that the repository he wants
to clone currently lives on his GitHub account. Note that it has to be on his account in
order for it to show up on this list – not someone else’s account. We will learn how to
get files from someone else’s account later.

2. Set the path where he wants the repository to be cloned to. Remember, the repository is
a just a folder with some files in it. When we clone the repository to our computer, those
files and folders will live on our computer somewhere. We need to tell GitKraken where
we want them to live. In the screenshot below, Arthur is just cloning the repository to
his computer’s desktop.

3. Tell GitKraken which repository on his GitHub account he wants to clone. We can use
the drop-down arrow to search a list of all of our repositories. In the screenshot below,
Arthur selected the r4epi_example_project repository.
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Finally, he will click the green Clone the repo! button. Now, he has successfully cloned his
repository to his computer! �

Before moving on, let’s pause and review what just happened.
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As we discussed above, Arthur’s repository already existed on the GitHub cloud see Figure 19.3.
In git terminology, the GitHub cloud called a remote repository, or “repo” for short. Remote
repositories are just copies of our repository that live on the internet or some other network.
Arthur then cloned his remote repository to his computer. That means, he made a copy of
all of the files and folders on his computer. In git terminology, the repository on our computer
is called a local repository.

Now that he has successfully cloned his repository, he should be able to view it in two different
ways.

First, he should be able to see his repository’s file folder on his desktop (because that’s the
location he chose above).

Second, he should be able to open a tab in GitKraken with all the versioning information
about his repository.
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Let’s pause here and watch a brief video from GitKraken that orients us to the GitKraken
user interface. For now, the first three minutes of the video is all we need. There may be some
unfamiliar terms in the video. Don’t stress about it! We will cover the most important parts
after the video and learn some of the other terms in future examples.

https://www.youtube.com/embed/RiAeNSFjjLc

Moving back to Arthur’s repository, we can see that the repository graph in the middle section
of the user interface has only on commit – the initial commit. This matches what we saw on
GitHub.
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If we zoom in on the upper left corner of the left sidebar menu (outlined in red below), we can
see that GitKraken is aware of two different places where the repository lives. First, it tells
us that Arthur has a local repository on his computer with one branch – the main branch.
Next, it tells us that there is one remote location for the repository – called “origin” – with
one branch – the main branch.

The term “origin” is used by convention in the git language to refer to the remote repository
that we originally cloned from. It uses the nickname “origin” instead of using the remote
repository’s full URL (i.e., web address). Arthur could change this name if he wanted, but
there’s really no need.
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Another useful thing we can see in the current view, is that the local repository and the remote
repository on GitHub are in sync. Meaning, the files and folders in the repository on Arthur’s
computer are identical to the files and folders in the repository on the GitHub cloud. We
know this because the little white and gray picture that represents the remote repository and
the little picture of the laptop that represents the local repository are located side-by-side
on the repository graph (see red arrow below). When we have made changes in one location
or another, but haven’t synced those changes to the other location, the two icons will be in
different rows of the repository graph. We will see an example of this soon.
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Step 3: Add an R project file to the repository

This step is technically optional, but we highly recommend it! We introduced R projects
earlier in the book. Arthur will go ahead and add an R project file to his repository now. This
will make his life easier later. To create a new R project, he just needs to click the drop-down
arrow next to the words Project: (None) to open the projects menu. Then, he will click the
New Project... option.
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That will open the new project dialogue box. This time, he will click the Existing Directory
option instead of clicking the New Directory option. Why? Because the directory (i.e., folder)
he wants to contain his R project already exists on his computer. Arthur cloned it to his
desktop in [step 2][Step 2: Clone the repository] above.
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All Arthur has to do now, is tell RStudio where to find the r4epi_example_project directory
on his computer using the Browse... button. In this case, on his desktop. Finally, he will
click the Create Project button.

Step 4: Update and commit gitignore

Let’s take a look at Arthur’s RStudio files pane. Notice that there are now three files in
the project directory. There is the README file, the .Rproj file, and a file called .gitignore.
RStudio created this file automatically when Arthur designated the directory as an R project.

Outside of the name – .gitignore – there is nothing special about this file. It’s just a plain
text file. But naming it .gitignore tells the git software that it contains a list of files that
git should ignore. By ignore, we mean, “pretend they don’t exist.”
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Arthur will now open the .gitignore file and see what’s there.

Currently, there are four files on the .gitignore list. These files were added automatically by
RStudio to try to help him out. Tracking versions of these files typically isn’t useful. Because
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these files are on the .gitignore list, git and GitHub won’t even notice if Arthur creates,
edits, or deletes any of them. This means that they also won’t ever be uploaded to GitHub.

At this point, Arthur is going to go ahead and add one more file to the .gitignore list. He
will add .DS_store to the list. .DS_store is a file that the MacOS operating system creates
automatically when a Mac user navigates to a file or folder using Finder. None of that really
matters for our purposes, though. What does matter is that there is no need to track versions
of this file and it will be a constant annoyance if Arthur doesn’t ignore it.

If Arthur were using a Windows PC instead of a Mac, the .DS_store file should not be an issue.
However, adding .DS_store to .gitignore isn’t a bad idea even when using a Windows PC
for at least two reasons. First, there is no harm in doing so. Second, if Arthur ever collaborates
with someone else on this project who is using a Mac, then the .DS_store file could find its
way into the repository and become an annoyance. Therefore, we recommend always adding
.DS_store to the .gitignore list regardless of the operating system you personally use.

Adding .DS_store (or any other file name) to the .gitignore list is as simple as typing
.DS_store on its own line of the .gitignore file and clicking Save.

Typically, the next thing we would do after creating our repository is to start creating and
adding the files we need to complete our analyses.

Now, Arthur will open GitKraken so we can take a look. Notice that Arthur’s GitKraken looks
different than it did the last time we viewed it. That’s because we’ve been making changes to
the repository. Specifically, we’ve added two files since the last commit was made. There are
at least two ways we can tell that is the case.
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First, the repository graph in the middle section of the user interface has now has two rows.
The bottom row is still the initial commit, but now there is a row above it that says // WIP
and has a + 2 symbol. WIP stands for work in progress and the + 2 indicates that there are
two files that have changed (in this case, they were added) since the last commit. So, Arthur
has been working on two files since his last commit.

Additionally, the commit panel on the right side of the screen shows that there are
two new uncommitted and unstaged files in the directory. They are .gitignore and
r4epi_example_project.Rproj.

At this point, Arthur wants to take a snapshot of the state of his repository. Meaning, he
wants to save a version of his repository as it currently exists. To do that, he first needs to
stage the changes since the previous commit that he wants to be included in this commit.
In this case, he wants to include all changes. So, he will click the green Stage all changes
button located in the commit panel.
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After clicking the Stage all changes button, the two new files are moved down to the Staged
Files window of the commit panel.

Next, Arthur will write a commit message. Just like there are best practices for writing R code,
there are also best practices for writing commit messages. Here is a link to a blog post that
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we think does a good job of explaining these best practices: https://cbea.ms/git-commit.

The first line is called the commit message. You can think of the commit message as a brief
summary of what this commit does to the repository. This message will help Arthur and his
collaborators find key commits later in the future. In this context, “brief” means 72 characters
or less. GitKraken tries to help us out by telling us how many characters we’ve typed in our
commit message. Additionally, the commit message should be written in the imperative voice
– like a command. Another way to think about it is that the commit message should typically
complete the phrase, “If applied, this commit will…”. The screenshot below shows that Arthur
wrote Add Rproj and gitignore to project (red arrow 1).

In addition to the commit message, there is also a description box we can use to add more
details about the commit. Sometimes, this is unnecessary. However, when we do choose to
add a description, it is best practice to use it to explain what the commit does or why we chose
to do it rather than how it does whatever it does. That’s in the code. In the screenshot below,
you can see that Arthur added some bulleted notes to the description (red arrow 2).

Finally, Arthur will click the green commit button at the bottom of the commit panel (red
arrow 3). This will commit (save) a version of our repository that includes the changes to any
of the files in the Staged Files window.

And here is what his GitKraken screen looks like after committing.
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Let’s pay special attention to what is being displayed in a couple of different areas. We’ll start
by zooming in on the commit panel.

At the top of the commit panel, we can see the short version of the commit ID – 4a394b. Below
that, we can see the commit message and description. Below that, we can see who created
the commit and when. This tends to be more useful when we are collaborating with others.
To the right of that information, GitKraken also shows us the commit ID for this commit’s
parent commit – 277451. Finally, it shows us the file changes that this commit applies to our
repository. More specifically, it shows us the changes that commit 4a394b makes to commit
277451.
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At this point, you may be wondering what this whole parent-child thing is and why we keep
talking about it. The diagram below is a very simple graphical representation of how git views
our repository. It views it as a series of commits that chronologically build our repository
when they are applied to each other in sequence. Familial terms are often used in the git
community to describe the relationship between commits. For example, in the diagram below
commit 4a394b is a child of commit 288451. Child commits are always more recent than
parent commits. This knowledge is not incredibly useful to us at this point, but it can be
helpful when we start to learn about more advanced topics like merging commits. For now,
just be aware of the terminology.
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It is also important to point out that Arthur’s most recent commit (4a394b) only exists in
his local repository. That is, the repository on his computer. He has not yet shared the
commit – or the new files associated with the commit – to the remote repository on GitHub.

How do we know? Well, one way we can tell is by looking at Arthur’s GitKraken window. In
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the repository graph, the local repository (i.e., the little laptop icon) and the remote repository
(i.e., the little gray and white icon) are on different rows. Additionally, there is a little 1 next
to an up arrow displayed to the left of the main branch of our local repository in the left
panel of GitKraken. Both of these indicate that the most recent commits contained in each
repository are different. Specifically, that the local repository is one commit ahead of the
remote repository.

This concept is important to understand. In Google Docs, when we made a change to our
document locally, that change was automatically synced to Google’s servers. We didn’t have
to do anything to save/create a version of the document. We had to put in a little effort if we
wanted to name a particular version, but the version itself was already saved – identified using
a date-time stamp. Conversely, git does not automatically make commits (i.e., save snapshots
of the state of the files in our repository), nor does our local repository automatically sync up
with our remote repository (in this case, GitHub). We have to do both of these things manually.
This will create a little extra work for us, but it will also give us a lot more control.

As one additional check, Arthur can go look at the repository’s commit history on GitHub.
As shown in the screenshot below, the commit history still only shows one commit – the initial
commit.
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Let’s quickly pause and recap what Arthur has done so far.

First, Arthur created a repository on GitHub. It was a remote repository because he accesses
it over the internet. Then, he cloned (i.e., made a copy of) the remote repository to his
computer. This copy is referred to as a local repository. Next, Arthur made some changes to
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the repository locally and committed them. At this point, the local repository is 1 commit
ahead of the remote repository, and the changes that Arthur made locally are not currently
reflected on GitHub.

So, how does Arthur sync the changes he made locally with GitHub? He will push them to
GitHub, which GitKraken makes incredibly easy. All he needs to do is click the Push button
at the top of his GitKraken window (see below).

After doing so, we will once again see some changes. What changes do you notice in the
screenshot below?
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In the repository graph, the local repository (i.e., the little laptop icon) and the remote repos-
itory (i.e., the little gray and white icon) are back on the same row. Additionally, the little 1
next to an up arrow is no longer displayed in the left panel. Both of these changes indicate
that the most recent commits contained in each repository are the same.

And if Arthur once again checks GitHub…
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He will now see that the GitHub repository also has two commits. He can click on the text
that says 2 commits to view each commit in the commit history.

In the commit history, he can now see commit 4a394b7. Let’s take another pause here and
recap.
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First, Arthur created a repository on GitHub. Then, he cloned the remote (i.e., GitHub)
repository to his computer. Next, Arthur made some changes to the repository locally and
committed them locally. Finally, he pushed the local commit up to GitHub. Now, his
GitHub repository and local repository are in sync with each other.

We realize that it probably seems like it took a lot of work for Arthur to get everything set up.
But in reality, all of the steps up to this point will only take a couple of minutes once you’ve
gone through them a few times.

Step 5: Keep adding and committing files

At this point, Arthur has his repositories all set up and is ready to start rocking and rolling
on his actual data analysis. To round out this example, Arthur will add some data to his
repository that he will eventually analyze using R.
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The screenshot above shows that Arthur created a new folder inside the R project directory
called data. He created it in the same way he would create any other new folder in his
computer’s operating system. Then, he added a data set to the data folder he created. This
particular data set happens to be stored in an Excel file named form_20.xlsx.

Now, when Arthur checks GitKraken, this is what he sees in the commit panel.
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Just like before, GitHub is telling Arthur that he has a new unstaged file in the repository.
Stop for a moment and think. What should Arthur do next?

Was your answer, “stage and commit the new file”? If so, slow down and think again. Remem-
ber, in general, we don’t ever want to commit our research data to our GitHub repository.
GitHub is not typically considered secure or private. So, how can Arthur keep the data in his
local repository so that he can work with it, keep his local repository synced with GitHub, but
make sure the data doesn’t get pushed up to GitHub?

Do you remember earlier when Arthur told git and GitHub to ignore the .DS_Store file? In
exactly the same way, Arthur can tell git and GitHub to ignore this data set. And once it’s
ignored, it won’t ever be pushed to GitHub. Remember, our local git repository only includes
files it’s tracking in commits, and it only pushes commits (and the files included in them) up
to GitHub.

In the screenshot below, Arthur added data/ to line 6 of the .gitignore file. He could have
added form_20.xlsx instead. That would have told git to ignore the form_20.xlsx data set
specifically. However, Arthur doesn’t want to push any data to GitHub – including any data
sets that he may add in the future. By adding data/ to the .gitignore file, he is telling git to
ignore the entire folder named data and all of the files it contains – now and in the future.

284



After saving the updated .gitignore file, the commit pane in GitKraken changes once again.

The new file data/form_20.xlsx is no longer showing up as an unstaged change. Instead, the
only unstaged change showing up is the edited .gitignore file. We can tell that the changes
to the .gitignore file are edits – as opposed to adding the file for the first time – because
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there is a little pencil icon to the left of the file name instead of a little green plus icon. Now
what should Arthur do next?

Was your answer, “stage and commit the edited file”? If so, you are correct! Now it is safe for
Arthur to go ahead and commit these changes.

After doing so, he can see that the GitHub repository contains 3 commits. Additionally, as
shown the red box below, the data folder is nowhere to be found among the files contained in
the GitHub repository.

Arthur will now add one final file to the r4epi_example_project as part of this example. He
will add an Quartofile with a little bit of R code in it. The code will import form_20.xlsx
into the global environment as a data frame.
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An then he will commit and push the data_01_import.Rmd to GitHub in the same way he
committed and pushed previous files to Github.

Arthur can continue adding files to his local repository and then pushing them to GitHub in
this fashion for the remainder of the time he is working on this project, and the introduction
to git and GitHub chapter discusses why he should consider doing so.

After going through this example, many students have three lingering questions:

1. How often should we commit?

2. How often should we push our commits to GitHub?

3. If we can’t use GitHub to share our data, how should we share data?

We will answer questions 1 & 2 immediately below. We will answer the third question in the
next example.
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19.6 Committing and pushing

As we are learning to use git and GitHub, it is reasonable to ask how often we should commit
our work as we go along. For better or worse, there is no hard-and-fast rule we can give you
here. In Happy Git and GitHub for the useR, Dr. Jennifer (Jenny) Bryan writes that we
should commit “every time you finish a valuable chunk of work, probably many times a day.”10

This seems like a pretty good starting place to us.

Of course, a natural follow-up question is to ask how often we should push our commits to
GitHub. We could automatically push every commit we make to GitHub as soon as we make
it. However, this isn’t always a good idea. It is much easier to edit or rollback commits that
we have only made locally than it is to edit or rollback commits that we’ve pushed to our
remote repository. For example, if we accidentally include a data set in a commit and push
it to GitHub, this is a much bigger problem than if we accidentally include a data set in a
commit and catch it before we push to GitHub. For this reason, we don’t suggest that you
automatically push every commit you make to GitHub. So, how often should you push? Well,
once again, there is no hard-and-fast rule. And once again, we think Dr. Bryan’s advice is
a good starting point. She writes, “Do this [push] a few times a day, but possibly less often
than you commit.”10 It is also worth noting that how often you commit and push will also be
dictated, at least partially, by the dynamics of the group of people who are contributing to the
repository. So far, we have really only seen a repository with a single contributor (i.e., Arthur
Epi). That will change in the next example.

The advice above about committing and pushing may seem a little vague to you right now. It
is a little vague. We apologize for that. However, we believe it’s also the best we can do. On
the bright side, as you practice with git and GitHub, you will eventually fall into a rhythm
that works well for you. Just give it a little time!

19.7 Example 3: Contribute to a research project

When our research assistants begin helping us with data management and analysis projects,
we often have them start by going to the project’s GitHub repository to read the existing
documentation and clone all the existing code to their computer. This example is going to
walk through that process step-by-step. For demonstration purposes, we will work with the
example repository that our fictitious research assistant named Arthur Epi created in Example
2 above.

Note

�Side Note: It’s probably worth noting that in most real-world scenarios the roles here
would be reversed. That is, we (Brad or Doug) would have created the original repository
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and Arthur would be working off of it. However, the example repository above was
already created using Arthur’s GitHub account, and we will continue to work off of it in
this example. If you are a research assistant working with us (i.e., Brad or Doug) in real
life, and using this example to walk yourself through getting started on a real project, you
should insert yourself (and your GitHub account) into Brad’s role (and GitHub account)
in the example below.

In this example, we’re going to work collaboratively with Arthur on the r4epi_example_project.
Arthur could have just emailed us all of the project files, but sometimes that might be many
files, some of them may be very large, and he runs the risk of forgetting to send some of them
by accident. Further, every time any of the contributors adds or updates a file, they will have
to email all the other contributors the new file(s) and an explanation of the updates they’ve
made. This process is typically inefficient and error prone. Conversely, Arthur could set up a
shared folder on a cloud-based file storage service like Dropbox, Google Drive, or OneDrive.
Doing so would circumvent the issues caused by emailing files that we just mentioned (i.e.,
many files, large files, forgetting files, and manually sending updates). However, Dropbox,
Google Drive, and OneDrive aren’t designed to take advantage of all that git and GitHub
have to offer (e.g., project documentation, versioning and version history, viewing differences
between code versions, issue tracking, creating static websites for research dissemination, and
more). Because Arthur created his repository on GitHub, all of the files and documentation
we need to get started assisting him are easily accessible to us. All, he has to do is send us the
repository’s web address, which is https://github.com/arthur-epi/r4epi_example_project.

After navigating to a GitHub repository, the first thing we typically want to do is read the
README. It should have some useful information for us about what the repository does, how
it is organized, and how to use it. Because this is a fictitious, minimal example for the book,
the current README in the r4epi_example_project project isn’t that useful, impressive,
or informative. Matias Singers maintains a list of great READMEs at the following link that
you may want to check out: https://github.com/matiassingers/awesome-readme. If you want
to see an example README from a real research project that we worked on, you can check
out this link: https://github.com/brad-cannell/detect_pilot_test_5w. After we read over the
README file, we are ready to start making edits and additions to the project. But how do
we do that?

While it is technically possible for us to edit code files directly on GitHub (see [Contributing
to R4Epi]), this is typically only a good idea for extremely minor edits (e.g., a typo in the
documentation). Typically, we will want to make a copy of all the code files on our computer
so that we can experiment with the edits we are making. Said another way, we can suggest
edits to R code files directly on GitHub, but we can’t run those files in R directly on GitHub
to make sure they do what we intend for them to do. To test our changes in R, we will need
all of the repository’s files on our local computer. And how do we do that?
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19.7.1 Forking a repository

If your answer the question above was, “we clone the r4epi_example_project repository to
our computer” you were close, but that isn’t our best option here. While we technically can
clone public repositories that aren’t on our account, we can’t push any changes to them. And
this is a good thing! Think about it, do we really want any person out there on the internet
to be able to make changes to our repository anytime they want without any oversight from
us? No way!

In this case, forking the repository is going to be the better option. This is another funny
name, but we are once again just talking about making a copy of the repository. However,
this time we are copying the repository from the original GitHub account (i.e., Arthur’s) to
our GitHub account. With cloning, we were copying the repository from the original GitHub
account to our computer. Do you see the difference? Let’s try to visualize it.
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The purple arrow above indicates that we are forking (i.e., making a copy of) the origi-
nal r4epi_example_project repository on Arthur’s GitHub account to Brad’s GitHub ac-
count. And doing so is really easy. All Brad has to do is log in to GitHub and navi-
gate to Arthur’s r4epi_example_project repository located at https://github.com/arthur-
epi/r4epi_example_project. Then, he needs to click on the Fork button located near the
top-right corner of the screen.
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Then Brad will click the green Create fork button on the next page.

And after a few moments, this will create an entirely new repository on Brad’s GitHub account.
It will contain an exact copy of the all the files that were on the repository in Arthur’s GitHub
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account, but Brad is the owner of this repository on his account (shown in the screenshot
below).

Because Brad is the owner of this repository, he can clone it to his local computer, work on
it, and push changes up to GitHub in exactly the same way that Arthur did in the example
above. Just to be clear, the changes that Brad pushes to his GitHub repository will have no
effect on Arthur’s GitHub repository.

Note

�Side Note: As we’ve pointed out multiple times in this chapter, we generally do not
want to upload research data to GitHub. Why? Because it isn’t typically considered
private or secure. However, in order for Brad to do work on this project, he will need to
access the data somehow. This will require Arthur to share to data with Brad through
some means other than GitHub. Different organizations have different rules about what
is considered secure. For example, it may be an encrypted email or it may be a link
to a shared drive on a secure server. However the data is shared, it is important for
Brad to create the same file structure on his computer that Arthur has on his
computer. Otherwise, the R code will not work on both computers. Remember from the
example above that Arthur created a data/ folder in his local repository and he moved the
form_20.xlsx data to that folder. Then, in the data_01_import Quartofile, he imports
the data using the relative path data/form_20.xlsx. In the chapter on file paths we
discussed the advantages of using relative file paths when working collaboratively. Just
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remember, in order for this relative file path to work identically on Arthur’s computer
and Brad’s computer, the folder structure and file names must also be identical. So, if
Brad put the form_20.xlsx data in a folder in his local repository called data sets/
instead of data/, then the code in the data_01_import Quartofile would throw an error.

Notice that in the diagram above, Arthur’s original repository is totally unaffected by any
changes that Brad is pushing from his local computer to the repository on his GitHub account.
There is no arrow from Brad’s remote repository going into Arthur’s remote repository. Again,
this is a good thing. Literally anyone else in the world with a GitHub account could just as
easily fork the repository and start making changes. If they also had the ability to make
changes to the original repository at will, they could potentially do a lot of damage!

However, in this case, Arthur and Brad do know each other and they are working collabora-
tively on this project. And at some point, the work that Brad is doing needs to be synced
up with the work that Arthur is doing. In order to make that happen, Brad will need to
send Arthur a request to pull the changes from Brad’s remote repository into Arthur’s remote
repository. This is called a pull request.
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19.7.2 Creating a pull request

To make this section slightly more realistic, let’s say that Brad adds some code to
data_01_import.Qmd. Specifically, he adds some code that will coerce the date_received
column from character strings to dates (code below).
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Then, Brad commits the changes and pushes them up to his GitHub account. Now, when
he checks his GitHub account he can see that his remote repository is 1 commit ahead of
Arthur’s remote repository. And that makes sense, right? Brad just updated the code in
data_01_import.Qmd, committed that changed, and pushed the commit to his GitHub ac-
count, but nothing has changed in the repository on Arthur’s GitHub account.
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Now, Brad needs to create a pull request. This pull request will let Arthur know that Brad
has made some changes to the code that he wants to share with Arthur. To do so, Brad will
click Contribute and then click the green Open pull request button as shown below.

The top section of the next screen, which is outlined in red below, allows Brad to select the
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repository and branch on his GitHub account that he wants to share with Arthur (to the right
of the arrow). More specifically, he is sending a request to Arthur asking him to merge his
code into Arthur’s code. In this case, the code he wants to ask Arthur to merge is on the main
branch of the brad-cannell/r4epi_example_project repository (Brad’s repository only
has one branch – the main branch – at this point). To the left of the arrow, Brad can select
the repository and branch on Arthur’s GitHub account that he wants to ask Arthur to merge
the code into. In this case, the main branch of the arthur-epi/r4epi_example_project
repository (Arthur’s repository only has the main branch at this point as well).

Below the red box, GitHub is telling Brad about the commits that will be sent in this pull
request and the changes that will be made to Arthur’s files if he merges the pull request
into his repository. In this case, only one file in Arthur’s repository would be altered –
data_01_import.Rmd. Below that, Brad can see that the exact differences between his ver-
sion of data_01_import.Rmd and the version that currently exists in Arthur’s repository. How
cool is that that Brad and Arthur can actually see exactly how this pull request changes the
file state down to individual lines of code?

Because Brad is satisfied with what he sees here, he clicks the green Create pull request
button shown in the middle right of the screenshot below.
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Let’s pause here and get explicit about two things.

1. As we’ve tried to really drive home above, this pull request will not automatically make
any changes to Arthur’s repository. Rather, it will only send Arthur Brad’s code, ask him
to review it, and then allow him to choose whether to incorporate it into his repository
or not.

2. Pull requests are sent at the branch level not at the file level. Meaning, if Arthur
accepts Brad’s pull request, it will make all of the files on his main branch identical
to all of the files on Brad’s main branch (the main branch because that is the branch
Brad chose in the screenshot above – and currently the only branch in either repository).
In this case, that means that the only file that would change as a result of copying
over the entire branch is data_01_import.Rmd. However, if Brad had made changes to
data_01_import.Rmd and another file, Arthur would only have the option to merge both
files or neither file. He would not have the option of merging data_01_import.Rmd only.
Pull requests merge the entire branch, not specific files. We are emphasizing this because
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this may affect how you commit, push, and create pull requests when you are working
collaboratively. More specifically, you may want to commit, push, and send pull requests
more frequently than you would if you were working on a project independently.

On the next screen, Brad is given an opportunity to give the pull request a title and add a
message for Arthur that give him some additional details. In general, it’s a good idea to fill
this part out using similar conventions to those described above for commit messages.

After filling out the commit message, Brad will click the green Create pull request button
on last time, and he is done. This will send Arthur the pull request.

The next time Arthur checks the r4epi_example_project on GitHub, he will see that he has
a new pull request.

300



If he clicks on the text Pull requests text, he will be taken to his pull requests page. It will
show him all pending pull requests. In this case, there is just the one pull request that Brad
sent.

When he clicks on it, he will see a screen like the one in the screenshot below. Scanning from

301



top to bottom, it will tell him which branch Brad is requesting to merge the code into, show
him the message Brad wrote, tell him that he can merge this branch without any conflicts if
he so chooses, and give him an opportunity to write a message back to Brad before deciding
whether to merge this pull request or close it.

He also has the option to view some additional details by clicking the Commits tab, Checks
tab, and/or Files changed tab towards the top of the screen. Let’s say he decides to click on
the Files changed tab.

On the Files changed tab, Arthur can see each of the files that the pull request would change
if he were to merge it into his repository (in this case, only one file). For each file, he can see
(and even comment on) each specific line of code that would change. In this case, Arthur is
pleased with the changes and navigates back to the Conversation tab by clicking on it.
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Back on the Conversation tab (see screenshot below), Arthur has some options. If he wants
more clarification about the pull request, he can send leave a comment for Brad using the
comment box near the bottom of the screen. If he knows that he does NOT want to merge
this pull request into his code, he can click the Close pull request button at the bottom of
the screen. This will close the pull request and his code will remain unchanged. In this case,
Arthur wants to incorporate the changes that Brad sent over, so he clicks the green Merge
pull request button in the middle of the screen.

303



Then, he is given an opportunity to add some details about the changes this merge will make
to the repository once it is committed. You can once again think of this message as having a
very similar purpose to commit messages, which were discussed above. In fact, it will appear
as a commit in the repository’s commit history.

Finally, he clicks the green Confirm merge button.
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And if Arthur navigates back to his commit history page, he can see two new commits. Brad’s
commit with the updated data_01_import.Qmd file, and the commit that was automatically
created when Arthur merged the branches together.
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Now, Arthur takes a look at data_01_import.Qmd on his computer. To his surprise, the code
to coerce date_received into dates isn’t there. Why not?
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Well, let’s open GitKraken on Arthur’s computer and see if we can help him figure it out.
In the repository graph, Arthur’s local repository (i.e., the little laptop icon) and the remote
repository (i.e., the little gray and white icon) are on different rows. Additionally, there is a
little 2 next to a down arrow displayed to the left of the main branch of our local repository
in the left panel of GitKraken. Both of these indicate that the most recent commits contained
in each repository are different. Specifically, that the local repository is two commits behind
the remote repository.
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So, let’s pause here for a second and review what we’ve done so far. As shown in the figure
below:

1. Brad made some updates to the code on his computer and then committed those changes
to his local repository. At this point, his local repository is out of sync with his remote
repository, Arthur’s remote repository, and Arthur’s local repository.

2. Next, Brad pushed that commit from his local repository up to his remote repository on
GitHub. After doing so, his local repository and remote repository are synced with each
other, but they are still out of sync with Arthur’s remote repository and Arthur’s local
repository.

3. Then, Brad created a pull request for Arthur. The request was for Arthur to pull the
latest commit from Brad’s remote repository into Arthur’s remote repository.

4. Arthur accepted and merged Brad’s pull request. After doing so, his remote reposi-
tory, Brad’s remote repository, and Brad’s local repository are all contain the updated
data_01_import.Qmd file, but Arthur’s local repository still does not.
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So, how does Arthur get his local repository in sync with his remote repository?

Arthur just needs to use the pull command to download the files from his updated remote
repository and merge them into his local repository (step 5 below).
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And GitKraken makes pulling the files from his remote repository really easy. All Arthur
needs to do is click the pull button shown in the screenshot below. GitKraken will download
(also called fetch) the updated repository and merge the changes into his local repository.

And as shown in the screenshot below, Arthur can now see that his local repository is now in
sync with his remote repository once again! �
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But, what about Brad’s repository? Well, as you can see in the screenshot below, Brad’s
remote repository is now 1 commit behind Arthur’s. Why?

This one is kind of weird/tricky. Although the code in Brad’s repository is now identical
to the code in Arthur’s repository, the commit history is not. Remember, Arthur’s commit
history from above? When he merged Brad’s code into his own, that automatically created
an additional commit. And that additional commit does not currently exist in Brad’s commit
history. It’s an easy fix though!
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All Brad needs to do is a quick fetch from Arthur’s remote repository to merge that last
commit into his commit history, and then pull it down to his local repository.
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To do so, Brad will first click Fetch upstream followed by the green Fetch and merge but-
ton.

After a few seconds, GitHub will show him that his remote repository is now synced up with
Arthur’s remote repository. All he as to do now is a quick pull in GitHub.
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And now we have seen the basic process for collaboratively coding with git and GitHub. Don’t
feel bad if you are still feeling a little bit confused. Git and GitHub are confusing at times
even for experienced programmers. But that doesn’t mean that they aren’t still valuable tools!
They are!

We also recognize that it might seem like that was a ton of steps above. Again, we went
through this process slowly and methodically because we are all trying to learn here. In a
real-life project with two experienced collaborators, the steps in this example would typically
be completed in a matter of minutes. No big deal.

19.8 Summary

There is so much more to learn about git and GitHub, but that’s not what this book is about.
So, we will stop here. We hope the examples above demonstrate some of the potential value of
using git and GitHub in your project workflow. We also hope they give you enough information
to get you started.

Here are some free resources we recommend if you want to learn even more:

1. Chacon S, Straub B. Pro Git. Second. Apress; 2014. Accessed June 13, 2022.
https://git-scm.com/book/en/v2

2. GitHub. Getting started with GitHub. GitHub Docs. Accessed June 13, 2022.
https://ghdocs-prod.azurewebsites.net/en/get-started
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3. Bryan J. Happy Git and GitHub for the useR.; 2016. Accessed June 2, 2022.
https://happygitwithr.com/index.html

4. Keyes D. How to Use Git/GitHub with R. R for the Rest of Us. Published February
13, 2021. Accessed June 13, 2022. https://rfortherestofus.com/2021/02/how-to-use-git-
github-with-r/

5. Wickham H, Bryan J. Chapter 18 Git and GitHub. In: R Packages. Accessed June 13,
2022. https://r-pkgs.org/git.html
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A Glossary

Console The console is located in RStudio’s bottom-right pane by default. The R console is
an interactive programming environment where we can enter and execute R commands.
It’s the the most basic interface for interacting with R, providing immediate feedback
and results from the code we enter. The R console is useful for testing small pieces
of code and interactive data exploration. However, we recommend using R scripts or
Quarto/ files for all but the simplest programming or data analysis tasks.

Data frame. For our purposes, data frames are just R’s term for data set or data table. Data
frames are made up of columns (variables) and rows (observations). In R, all columns of a
data frame must have the same length.

Functions. Coming soon.

• Arguments Arguments always live inside the parentheses of R functions and receive
information the function needs to generate the result we want.

• Pass In programming lingo, we pass a value to a function argument. For example, in
the function call seq(from = 2, to = 100, by = 2) we could say that we passed
a value of 2 to the from argument, we passed a value of 100 to the to argument,
and we passed a value of 2 to the by argument.

• Return Instead of saying, “the seq() function gives us a sequence of numbers…” we
could say, “the seq() function returns a sequence of numbers…” In programming
lingo, functions return one or more results.

Global environment. Coming soon.

Issue (GitHub) GitHub’s documentation says issues are “items you can create in a repository
to plan, discuss and track work. Issues are simple to create and flexible to suit a variety
of scenarios. You can use issues to track work, give or receive feedback, collaborate on
ideas or tasks, and efficiently communicate with others.”11

Objects. Coming soon.

R R’s documentation says “R is a language and environment for statistical computing and
graphics. It is a GNU project which is similar to the S language and environment which
was developed at Bell Laboratories (formerly AT&T, now Lucent Technologies) by John
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Chambers and colleagues.”12 R is open source, and you can download it for free from
The Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/.

Repository GitHub’s documentation says “a repository contains all of your code, your files,
and each file’s revision history. You can discuss and manage your work within the
repository.”13 A repository can exist locally as a set of files on your computer. A repos-
itory can also exist remotely as a set of files on a sever somewhere, for example, on
GitHub.

RStudio RStudio is an integrated development environment (IDE) for R. It includes a con-
sole, syntax-highlighting editor that supports direct code execution, as well as tools for
plotting, history, debugging and workspace management. RStudio is available in open
source and commercial editions and runs on the desktop (Windows, Mac, and Linux) or
in a browser connected to RStudio Server or RStudio Server Pro (Debian/Ubuntu, Red
Hat/CentOS, and SUSE Linux).14
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